These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31045032)

  • 1. Quantitative fuel-to-air ratio determination for elevated-pressure methane/air flames using chemiluminescence emission.
    McCord W; Gragston M; Wu Y; Zhang Z; Hsu P; Rein K; Jiang N; Roy S; Gord JR
    Appl Opt; 2019 Apr; 58(10):C61-C67. PubMed ID: 31045032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental Study on the Characteristics of Chemiluminescence in Coal Water Slurry Diffusion Flames Based on Hot Oxygen Burner Technology].
    Hu CH; Guo QH; Song XD; Gong Y; Yu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3127-33. PubMed ID: 30222256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emissions in short-gated ns/ps/fs-LIBS for fuel-to-air ratio measurements in methane-air flames.
    Gragston M; Hsu P; Jiang N; Roy S; Zhang Z
    Appl Opt; 2021 May; 60(15):C114-C120. PubMed ID: 34143118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.
    Hsu PS; Gragston M; Wu Y; Zhang Z; Patnaik AK; Kiefer J; Roy S; Gord JR
    Appl Opt; 2016 Oct; 55(28):8042-8048. PubMed ID: 27828047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Measurement of OH* and CH* Chemiluminescence in Jet Diffusion Flames.
    Liu Y; Tan J; Wan M; Zhang L; Yao X
    ACS Omega; 2020 Jul; 5(26):15922-15930. PubMed ID: 32656412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of CH fluorescence diagnostics in flames: range of applicability and improvements with hydrogen addition.
    Sutton JA; Driscoll JF
    Appl Opt; 2003 May; 42(15):2819-28. PubMed ID: 12777020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI.
    Wu Y; Bottom A; Zhang Z; Ombrello TM; Katta VR
    Opt Express; 2011 Nov; 19(24):23997-4004. PubMed ID: 22109424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-Line C
    Tonarely ME; Genova T; Morales AJ; Micka D; Knaus D; Ahmed KA
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on OH*, CH*, and CO
    Tian X; Yang J; Gong Y; Guo Q; Wang X; Yu G
    ACS Omega; 2022 Nov; 7(45):41137-41146. PubMed ID: 36406575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector.
    Eseller KE; Yueh FY; Singh JP
    Appl Opt; 2008 Nov; 47(31):G144-8. PubMed ID: 19122695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.
    Egermann J; Seeger T; Leipertz A
    Appl Opt; 2004 Oct; 43(29):5564-74. PubMed ID: 15508615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transient emission spectra from OH, CH and C2 free radicals in the combustion reaction of n-decane].
    Wang LD; Li P; Zhang CH; Tang HC; Ye B; Li XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 May; 32(5):1166-9. PubMed ID: 22827046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence.
    Li B; Li X; Yao M; Li Z
    Appl Spectrosc; 2015 Oct; 69(10):1152-6. PubMed ID: 26449808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames.
    Zhang D; Gao Q; Li B; Liu J; Tian Y; Li Z
    Appl Opt; 2019 Oct; 58(28):7810-7816. PubMed ID: 31674464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spectroscopic measurement of intermediate free radicals of n-heptane in the combustion reaction].
    Ye B; Li P; Zhang CH; Wang LD; Tang HC; Li XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Apr; 32(4):898-901. PubMed ID: 22715748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2002 Jun; 41(18):3547-57. PubMed ID: 12078680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CH and C2 measurements imply a radical pool within a pool in acetylene flames.
    Schofield K; Steinberg M
    J Phys Chem A; 2007 Mar; 111(11):2098-114. PubMed ID: 17388296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures.
    Van den Schoor F; Verplaetsen F; Berghmans J
    J Hazard Mater; 2008 May; 153(3):1301-7. PubMed ID: 17980485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.