These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 31045057)
21. Design of integrated silicon waveguides for Raman-enhanced four-wave mixing in the telecom band. Sun S; Mashanovich GZ; Peacock AC Opt Express; 2024 Mar; 32(6):8715-8722. PubMed ID: 38571122 [TBL] [Abstract][Full Text] [Related]
22. Detailed study of four-wave mixing in Raman DFB fiber lasers. Shi J; Horak P; Alam SU; Ibsen M Opt Express; 2014 Sep; 22(19):22917-24. PubMed ID: 25321762 [TBL] [Abstract][Full Text] [Related]
23. Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal. Hu X; Zeng M; Wang A; Zhu L; Fu L; Wang J Opt Express; 2015 Oct; 23(20):26158-67. PubMed ID: 26480130 [TBL] [Abstract][Full Text] [Related]
24. All-optical wavelength conversion for telecommunication mode-division multiplexing signals in integrated silicon waveguides. Xu Z; Jin Q; Tu Z; Gao S Appl Opt; 2018 Jun; 57(18):5036-5042. PubMed ID: 30117963 [TBL] [Abstract][Full Text] [Related]
25. All-fiber multiwavelength thulium-doped laser assisted by four-wave mixing in highly germania-doped fiber. Huang T; Li X; Shum PP; Wang QJ; Shao X; Wang L; Li H; Wu Z; Dong X Opt Express; 2015 Jan; 23(1):340-8. PubMed ID: 25835680 [TBL] [Abstract][Full Text] [Related]
26. Enhanced four-wave mixing in borophene-microfiber waveguides at telecom C-band. Li M; Yin P; Liu Z; Dong F; Sui L; Ma W; Wang T Appl Opt; 2022 Feb; 61(5):1261-1267. PubMed ID: 35201179 [TBL] [Abstract][Full Text] [Related]
29. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Wang KY; Foster AC Opt Lett; 2012 Apr; 37(8):1331-3. PubMed ID: 22513676 [TBL] [Abstract][Full Text] [Related]
30. Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier. Zhou C; He X; Xiao M; Ma D; Chen W; Zhou Z Front Optoelectron; 2024 Jun; 17(1):16. PubMed ID: 38833110 [TBL] [Abstract][Full Text] [Related]
31. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide. Li C; Gui C; Xiao X; Yang Q; Yu S; Wang J Opt Lett; 2014 Aug; 39(15):4583-6. PubMed ID: 25078234 [TBL] [Abstract][Full Text] [Related]
32. Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides. Wang Z; Liu H; Huang N; Sun Q; Wen J Appl Opt; 2011 Oct; 50(28):5430-6. PubMed ID: 22016209 [TBL] [Abstract][Full Text] [Related]
33. Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration. Driscoll JB; Ophir N; Grote RR; Dadap JI; Panoiu NC; Bergman K; Osgood RM Opt Express; 2012 Apr; 20(8):9227-42. PubMed ID: 22513635 [TBL] [Abstract][Full Text] [Related]
34. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source. Dave UD; Uvin S; Kuyken B; Selvaraja S; Leo F; Roelkens G Opt Express; 2013 Dec; 21(26):32032-9. PubMed ID: 24514798 [TBL] [Abstract][Full Text] [Related]
36. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio. Yin K; Zhang B; Yao J; Yang L; Liu G; Hou J Opt Lett; 2016 Nov; 41(21):5067-5070. PubMed ID: 27805687 [TBL] [Abstract][Full Text] [Related]