These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31045063)

  • 1. Development of a compact deep-sea Raman spectroscopy system and direct bicarbonate detection in sea trials.
    Guo J; Ye W; Liu Q; Qi F; Cheng K; Yang D; Zheng R
    Appl Opt; 2019 Apr; 58(10):2630-2634. PubMed ID: 31045063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials.
    Guo J; Lu Y; Cheng K; Song J; Ye W; Li N; Zheng R
    Appl Opt; 2017 Oct; 56(29):8196-8200. PubMed ID: 29047684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO₄(2-) Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System.
    Chen J; Ye W; Guo J; Luo Z; Li Y
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth Profiling Investigation of Seawater Using Combined Multi-Optical Spectrometry.
    Ye W; Guo J; Li N; Qi F; Cheng K; Zheng R
    Appl Spectrosc; 2020 May; 74(5):563-570. PubMed ID: 32031011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater.
    Liu C; Guo J; Tian Y; Zhang C; Cheng K; Ye W; Zheng R
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Easy-to-Operate Underwater Raman System for Deep-Sea Cold Seep and Hydrothermal Vent In Situ Detection.
    Liu Q; Guo J; Ye W; Cheng K; Qi F; Zheng R; Sun Z; Zhang X
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Direct Bicarbonate Detection Method Based on a Near-Concentric Cavity-Enhanced Raman Spectroscopy System.
    Yang D; Guo J; Liu C; Liu Q; Zheng R
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29194357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].
    Guo JJ; Lu Y; Liu CH; Zheng RE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):259-61. PubMed ID: 27228778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar.
    Bunkin AF; Klinkov VK; Lednev VN; Lushnikov DL; Marchenko AV; Morozov EG; Pershin SM; Yulmetov RN
    Appl Opt; 2012 Aug; 51(22):5477-85. PubMed ID: 22859038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300 ℃ and 30 MPa.
    Li L; Du Z; Zhang X; Xi S; Wang B; Luan Z; Lian C; Yan J
    Appl Spectrosc; 2018 Jan; 72(1):48-59. PubMed ID: 28691855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of advances in deep-ocean Raman spectroscopy.
    Zhang X; Kirkwood WJ; Walz PM; Peltzer ET; Brewer PG
    Appl Spectrosc; 2012 Mar; 66(3):237-49. PubMed ID: 22449300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive Raman system for dissolved gas analysis in water.
    Yang D; Guo J; Liu Q; Luo Z; Yan J; Zheng R
    Appl Opt; 2016 Sep; 55(27):7744-8. PubMed ID: 27661606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Minerals and Organics Relevant to Planetary Exploration Using a Compact Portable Remote Raman System at 122 Meters.
    Sandford MW; Misra AK; Acosta-Maeda TE; Sharma SK; Porter JN; Egan MJ; Abedin MN
    Appl Spectrosc; 2021 Mar; 75(3):299-306. PubMed ID: 32613858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy.
    Li M; Liu Q; Yang D; Guo J; Si G; Wu L; Zheng R
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy.
    Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B
    Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-ultraviolet Raman microspectroscopy: characterization of wide-gap semiconductors.
    Nakashima S; Okumura H; Yamamoto T; Shimidzu R
    Appl Spectrosc; 2004 Feb; 58(2):224-9. PubMed ID: 17140482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Water Raman spectrum suppression with low-pass filter in underwater in-situ Raman spectroscopy].
    Guo JJ; Liu ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Sep; 31(9):2428-30. PubMed ID: 22097842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and quantitation of a tertiary mixture of salts by Raman spectroscopy in simulated hydrothermal vent fluid.
    Dable BK; Love BA; Battaglia TM; Booksh KS; Lilley MD; Marquardt BJ
    Appl Spectrosc; 2006 Jul; 60(7):773-80. PubMed ID: 16854265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.