These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 31045128)

  • 21. Channel Waveguides in Lithium Niobate and Lithium Tantalate.
    Lu Y; Johnston B; Dekker P; Withford MJ; Dawes JM
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides.
    Wan L; Yang Z; Zhou W; Wen M; Feng T; Zeng S; Liu D; Li H; Pan J; Zhu N; Liu W; Li Z
    Light Sci Appl; 2022 May; 11(1):145. PubMed ID: 35595724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A design method of lithium niobate on insulator ridge waveguides without leakage loss.
    Saitoh E; Kawaguchi Y; Saitoh K; Koshiba M
    Opt Express; 2011 Aug; 19(17):15833-42. PubMed ID: 21934946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical microring resonators in fluorineimplanted lithium niobate.
    Majkic A; Koechlin M; Poberaj G; Günter P
    Opt Express; 2008 Jun; 16(12):8769-79. PubMed ID: 18545590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal based grating coupler on a thin-film lithium niobate waveguide.
    Ruan Z; Hu J; Xue Y; Liu J; Chen B; Wang J; Chen K; Chen P; Liu L
    Opt Express; 2020 Nov; 28(24):35615-35621. PubMed ID: 33379673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness.
    Wu R; Wang M; Xu J; Qi J; Chu W; Fang Z; Zhang J; Zhou J; Qiao L; Chai Z; Lin J; Cheng Y
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30404137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermo-optic tunable optical filters with GHz-bandwidth and flat-top passband on thin film lithium niobate platform.
    Ding Y; Tao S; Wang X; Shang C; Pan A; Zeng C; Xia J
    Opt Express; 2022 Jun; 30(12):22135-22142. PubMed ID: 36224919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-loss and broadband polarization-diversity edge coupler on a thin-film lithium niobate platform.
    Chen G; Chen K; Yu Z; Liu L
    Opt Lett; 2023 Aug; 48(15):4145-4148. PubMed ID: 37527139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes.
    Chen L; Wood MG; Reano RM
    Opt Express; 2013 Nov; 21(22):27003-10. PubMed ID: 24216923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Strain Modulation of a Nanowire Quantum Dot Compatible with a Thin-Film Lithium Niobate Photonic Platform.
    Descamps T; Schetelat T; Gao J; Poole PJ; Dalacu D; Elshaari AW; Zwiller V
    ACS Photonics; 2023 Oct; 10(10):3691-3699. PubMed ID: 37869556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of water vapor in a y-cut lithium niobate waveguide.
    Ahmad M; Chelapathi K; Patro YG
    Appl Opt; 1996 Mar; 35(9):1489-91. PubMed ID: 21085263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitigating photorefractive effect in thin-film lithium niobate microring resonators.
    Xu Y; Shen M; Lu J; Surya JB; Sayem AA; Tang HX
    Opt Express; 2021 Feb; 29(4):5497-5504. PubMed ID: 33726085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber.
    Yao N; Zhou J; Gao R; Lin J; Wang M; Cheng Y; Fang W; Tong L
    Opt Express; 2020 Apr; 28(8):12416-12423. PubMed ID: 32403739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching.
    Zhuang R; He J; Qi Y; Li Y
    Adv Mater; 2023 Jan; 35(3):e2208113. PubMed ID: 36325644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide.
    Pan A; Hu C; Zeng C; Xia J
    Opt Express; 2019 Nov; 27(24):35659-35669. PubMed ID: 31878734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Planar coupling to high-Q lithium niobate disk resonators.
    Nunzi Conti G; Berneschi S; Cosi F; Pelli S; Soria S; Righini GC; Dispenza M; Secchi A
    Opt Express; 2011 Feb; 19(4):3651-6. PubMed ID: 21369190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines.
    Lu R; Manzaneque T; Yang Y; Li MH; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1373-1386. PubMed ID: 31094687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method.
    Takigawa R; Higurashi E; Kawanishi T; Asano T
    Opt Express; 2014 Nov; 22(22):27733-8. PubMed ID: 25401917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films.
    Frigg A; Boes A; Ren G; Abdo I; Choi DY; Gees S; Mitchell A
    Opt Express; 2019 Dec; 27(26):37795-37805. PubMed ID: 31878554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical properties of epitaxial Ca
    Vigne S; Hossain N; Fesharaki F; Kabir SM; Margot J; Wu K; Chaker M
    Opt Express; 2016 Dec; 24(25):28573-28582. PubMed ID: 27958501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.