These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 31045337)
1. Quantum Dot Donor-Polymer Acceptor Architecture for a FRET-Enabled Solar Cell. Kokal RK; Raavi SSK; Deepa M ACS Appl Mater Interfaces; 2019 May; 11(20):18395-18403. PubMed ID: 31045337 [TBL] [Abstract][Full Text] [Related]
2. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance. Narayanan R; Das A; Deepa M; Srivastava AK Chemphyschem; 2013 Dec; 14(17):4010-21. PubMed ID: 24259302 [TBL] [Abstract][Full Text] [Related]
3. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization. Lee E; Kim C; Jang J Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414 [TBL] [Abstract][Full Text] [Related]
4. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells. Kumar PN; Deepa M; Ghosal P ACS Appl Mater Interfaces; 2015 Jun; 7(24):13303-13. PubMed ID: 26000891 [TBL] [Abstract][Full Text] [Related]
5. Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies. Khalid MA; Mubeen M; Mukhtar M; Siddique Z; Sumreen P; Aydın F; Asil D; Iqbal A J Fluoresc; 2023 Nov; 33(6):2523-2529. PubMed ID: 37314535 [TBL] [Abstract][Full Text] [Related]
6. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells. Das A; Deepa M; Ghosal P Chemphyschem; 2017 Apr; 18(7):736-748. PubMed ID: 28070927 [TBL] [Abstract][Full Text] [Related]
7. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
8. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye. Sadhu S; Patra A Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic Synthesis of CdS(core)-CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO Kitazono K; Akashi R; Fujiwara K; Akita A; Naya SI; Fujishima M; Tada H Chemphyschem; 2017 Oct; 18(20):2840-2845. PubMed ID: 28833927 [TBL] [Abstract][Full Text] [Related]
10. Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots. Li Z; Li S; Zhang Z; Zhang X; Li J; Liu C; Shen L; Guo W; Ruan S Phys Chem Chem Phys; 2016 Apr; 18(16):11435-42. PubMed ID: 27055908 [TBL] [Abstract][Full Text] [Related]
11. Improved performances of PCDTBT:PC71BM BHJ solar cells through incorporating small molecule donor. Zhu Y; Yang L; Zhao S; Huang Y; Xu Z; Yang Q; Wang P; Li Y; Xu X Phys Chem Chem Phys; 2015 Oct; 17(40):26777-82. PubMed ID: 26395803 [TBL] [Abstract][Full Text] [Related]
12. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure. Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125 [TBL] [Abstract][Full Text] [Related]
13. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell. Kumar PN; Deepa M; Srivastava AK Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507 [TBL] [Abstract][Full Text] [Related]
14. The Size Effect of TiO Li Z; Yu L Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096555 [TBL] [Abstract][Full Text] [Related]
15. Stability, Scale-up, and Performance of Quantum Dot Solar Cells with Carbonate-Treated Titanium Oxide Films. Kumar PN; Kolay A; Deepa M; Shivaprasad SM; Srivastava AK ACS Appl Mater Interfaces; 2017 Aug; 9(30):25278-25290. PubMed ID: 28692805 [TBL] [Abstract][Full Text] [Related]
16. Dual function of molybdenum sulfide/C-cloth in enhancing the performance of fullerene nanosheets based solar cell and supercapacitor. Das A; Deepa M; Ghosal P RSC Adv; 2018 Oct; 8(61):34984-34998. PubMed ID: 35547027 [TBL] [Abstract][Full Text] [Related]
17. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y. Yan Z; Zhang Z; Yu Y; Chen J Luminescence; 2015 Mar; 30(2):155-8. PubMed ID: 24888328 [TBL] [Abstract][Full Text] [Related]
18. A Bromo-Functionalized Conjugated Polymer as a Cross-Linkable Anode Interlayer of Polymer Solar Cells. Meng B; Xie Z; Liu J; Wang L Chem Asian J; 2016 Apr; 11(8):1218-22. PubMed ID: 26650517 [TBL] [Abstract][Full Text] [Related]
19. Shell thickness effects on quantum dot brightness and energy transfer. Chern M; Nguyen TT; Mahler AH; Dennis AM Nanoscale; 2017 Nov; 9(42):16446-16458. PubMed ID: 29063928 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of Hexa-peri-hexabenzocoronene (HBC) into Carbazole-Benzo-2,1,3-thiadiazole Copolymers to Improve Hole Mobility and Photovoltaic Performance. Gao C; Jiang P; Shi K; Ma D; Li Y; Yu G; Li X; Wang H Chem Asian J; 2016 Mar; 11(5):766-74. PubMed ID: 26698924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]