These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 31046194)

  • 1. The p53 gene family in vertebrates: Evolutionary considerations.
    Biscotti MA; Barucca M; Carducci F; Forconi M; Canapa A
    J Exp Zool B Mol Dev Evol; 2019 Sep; 332(6):171-178. PubMed ID: 31046194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans.
    Coffill CR; Lee AP; Siau JW; Chee SM; Joseph TL; Tan YS; Madhumalar A; Tay BH; Brenner S; Verma CS; Ghadessy FJ; Venkatesh B; Lane DP
    Genes Dev; 2016 Feb; 30(3):281-92. PubMed ID: 26798135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleosome-binding by TP53, TP63, and TP73 is determined by the composition, accessibility, and helical orientation of their binding sites.
    Wilson PD; Yu X; Buck MJ
    bioRxiv; 2024 May; ():. PubMed ID: 38746214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.
    Krishnan A; Mustafa A; Almén MS; Fredriksson R; Williams MJ; Schiöth HB
    Mol Phylogenet Evol; 2015 Oct; 91():27-40. PubMed ID: 26002831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage.
    Wichmann IA; Zavala K; Hoffmann FG; Vandewege MW; Corvalán AH; Amigo JD; Owen GI; Opazo JC
    Gene; 2016 Oct; 591(1):245-254. PubMed ID: 27432065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The TP53 signaling network in mammals and worms.
    Jolliffe AK; Derry WB
    Brief Funct Genomics; 2013 Mar; 12(2):129-41. PubMed ID: 23165352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and functional divergence of monocarboxylate transporter genes in vertebrates.
    Liu Q; Dou S; Wang G; Li Z; Feng Y
    Gene; 2008 Oct; 423(1):14-22. PubMed ID: 18674605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.
    Pervaiz N; Shakeel N; Qasim A; Zehra R; Anwar S; Rana N; Xue Y; Zhang Z; Bao Y; Abbasi AA
    BMC Evol Biol; 2019 Jun; 19(1):128. PubMed ID: 31221090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gain and loss of genes during 600 million years of vertebrate evolution.
    Blomme T; Vandepoele K; De Bodt S; Simillion C; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(5):R43. PubMed ID: 16723033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.
    Braasch I; Volff JN; Schartl M
    Mol Biol Evol; 2009 Apr; 26(4):783-99. PubMed ID: 19174480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.
    Hashiguchi Y; Nishida M
    Mol Biol Evol; 2007 Sep; 24(9):2099-107. PubMed ID: 17634392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic evolution of the GnRH receptor gene family in vertebrates.
    Williams BL; Akazome Y; Oka Y; Eisthen HL
    BMC Evol Biol; 2014 Oct; 14():215. PubMed ID: 25344287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the evolution of the somatostatin family: Already five genes in the gnathostome ancestor.
    Tostivint H; Gaillard AL; Mazan S; Pézeron G
    Gen Comp Endocrinol; 2019 Aug; 279():139-147. PubMed ID: 30836103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of nodal and nodal-related genes and the putative composition of the heterodimers that trigger the nodal pathway in vertebrates.
    Opazo JC; Kuraku S; Zavala K; Toloza-Villalobos J; Hoffmann FG
    Evol Dev; 2019 Jul; 21(4):205-217. PubMed ID: 31210006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.
    Pereira J; Johnson WE; O'Brien SJ; Jarvis ED; Zhang G; Gilbert MT; Vasconcelos V; Antunes A
    PLoS One; 2014; 9(12):e74132. PubMed ID: 25549322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the Rax family of developmental transcription factors in vertebrates.
    Orquera DP; de Souza FSJ
    Mech Dev; 2017 Apr; 144(Pt B):163-170. PubMed ID: 27838261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reevaluating Emx gene phylogeny: homopolymeric amino acid tracts as a potential factor obscuring orthology signals in cyclostome genes.
    Noro M; Sugahara F; Kuraku S
    BMC Evol Biol; 2015 May; 15():78. PubMed ID: 25935411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor.
    Redmond AK; Pettinello R; Dooley H
    Immunogenetics; 2017 Mar; 69(3):187-192. PubMed ID: 28070614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary history of glucose-6-phosphatase encoding genes in vertebrate lineages: towards a better understanding of the functions of multiple duplicates.
    Marandel L; Panserat S; Plagnes-Juan E; Arbenoits E; Soengas JL; Bobe J
    BMC Genomics; 2017 May; 18(1):342. PubMed ID: 28464795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of p53, p63, and p73 to the developmental diseases and cancer.
    Tomkova K; Tomka M; Zajac V
    Neoplasma; 2008; 55(3):177-81. PubMed ID: 18348649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.