BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31046245)

  • 1. Mechanism of the Flavoprotein d-6-Hydroxynicotine Oxidase: Substrate Specificity, pH and Solvent Isotope Effects, and Roles of Key Active-Site Residues.
    Fitzpatrick PF; Dougherty V; Subedi B; Quilantan J; Hinck CS; Lujan AI; Tormos JR
    Biochemistry; 2019 May; 58(21):2534-2541. PubMed ID: 31046245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Flavoprotein l-6-Hydroxynicotine Oxidase: pH and Solvent Isotope Effects and Identification of Key Active Site Residues.
    Fitzpatrick PF; Chadegani F; Zhang S; Dougherty V
    Biochemistry; 2017 Feb; 56(6):869-875. PubMed ID: 28080034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic study of L-6-hydroxynicotine oxidase by DFT and ONIOM methods.
    Yildiz I; Yildiz BS
    J Mol Model; 2021 Jan; 27(2):53. PubMed ID: 33507404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the Flavoprotein L-Hydroxynicotine Oxidase: Kinetic Mechanism, Substrate Specificity, Reaction Product, and Roles of Active-Site Residues.
    Fitzpatrick PF; Chadegani F; Zhang S; Roberts KM; Hinck CS
    Biochemistry; 2016 Feb; 55(4):697-703. PubMed ID: 26744768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH and deuterium isotope effects on the reaction of trimethylamine dehydrogenase with dimethylamine.
    Wanninayake US; Subedi B; Fitzpatrick PF
    Arch Biochem Biophys; 2019 Nov; 676():108136. PubMed ID: 31604072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme.
    Tararina MA; Xue S; Smith LC; Muellers SN; Miranda PO; Janda KD; Allen KN
    Biochemistry; 2018 Jul; 57(26):3741-3751. PubMed ID: 29812904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the role of the active site residue Arg98 in the flavoprotein tryptophan 2-monooxygenase, a member of the L-amino oxidase family.
    Sobrado P; Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(47):13826-32. PubMed ID: 14636049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7.
    Qiu J; Wei Y; Ma Y; Wen R; Wen Y; Liu W
    Appl Environ Microbiol; 2014 Sep; 80(18):5552-60. PubMed ID: 25002425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies of the flavoenzyme tryptophan 2-monooxygenase: deuterium and 15N kinetic isotope effects on alanine oxidation by an L-amino acid oxidase.
    Ralph EC; Anderson MA; Cleland WW; Fitzpatrick PF
    Biochemistry; 2006 Dec; 45(51):15844-52. PubMed ID: 17176107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
    Uluisik R; Romero E; Gadda G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1470-1478. PubMed ID: 28843728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.
    Robinson RM; Rodriguez PJ; Sobrado P
    Arch Biochem Biophys; 2014 May; 550-551():58-66. PubMed ID: 24769337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Tormos JR; Suarez MB; Fitzpatrick PF
    Arch Biochem Biophys; 2016 Dec; 612():115-119. PubMed ID: 27815088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of pH and kinetic isotope effects to establish chemistry as rate-limiting in oxidation of a peptide substrate by LSD1.
    Gaweska H; Henderson Pozzi M; Schmidt DM; McCafferty DG; Fitzpatrick PF
    Biochemistry; 2009 Jun; 48(23):5440-5. PubMed ID: 19408960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH dependence of a mammalian polyamine oxidase: insights into substrate specificity and the role of lysine 315.
    Henderson Pozzi M; Gawandi V; Fitzpatrick PF
    Biochemistry; 2009 Feb; 48(7):1508-16. PubMed ID: 19199575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of conserved active site residues in class I nitronate monooxygenase.
    Su D; Aguillon C; Gadda G
    Arch Biochem Biophys; 2019 Sep; 672():108058. PubMed ID: 31356775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.