These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31046304)

  • 1. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Phase velocity variations.
    Norouzian M; Turner JA
    J Acoust Soc Am; 2019 Apr; 145(4):2171. PubMed ID: 31046304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Attenuation.
    Norouzian M; Turner JA
    J Acoust Soc Am; 2019 Apr; 145(4):2181. PubMed ID: 31046338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode-converted ultrasonic scattering in polycrystals with elongated grains.
    Arguelles AP; Kube CM; Hu P; Turner JA
    J Acoust Soc Am; 2016 Sep; 140(3):1570. PubMed ID: 27914376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling.
    Sha G; Huang M; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2020 Apr; 147(4):2442. PubMed ID: 32359302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Aug; 51(6):697-708. PubMed ID: 21396672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-dependent ultrasonic scattering in polycrystalline materials.
    Kube CM; Turner JA
    J Acoust Soc Am; 2016 Feb; 139(2):811-24. PubMed ID: 26936563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of texture and grain shape on ultrasonic backscattering in polycrystals.
    Li J; Yang L; Rokhlin SI
    Ultrasonics; 2014 Sep; 54(7):1789-803. PubMed ID: 24630850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals.
    Huang M; Huthwaite P; Rokhlin SI; Lowe MJS
    Proc Math Phys Eng Sci; 2022 Feb; 478(2258):20210850. PubMed ID: 35221773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of elastic waves through textured polycrystals: application to ice.
    Maurel A; Lund F; Montagnat M
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140988. PubMed ID: 27547099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis.
    Huang M; Sha G; Huthwaite P; Rokhlin SI; Lowe MJS
    J Acoust Soc Am; 2020 Dec; 148(6):3645. PubMed ID: 33379920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic attenuation of polycrystalline materials with a distribution of grain sizes.
    Arguelles AP; Turner JA
    J Acoust Soc Am; 2017 Jun; 141(6):4347. PubMed ID: 28618813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive Relations of Anisotropic Polycrystals: Self-Consistent Estimates.
    Li A; Zhao T; Lan Z; Huang M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic attenuation coefficients for polycrystalline materials containing crystallites of any symmetry class.
    Kube CM; Turner JA
    J Acoust Soc Am; 2015 Jun; 137(6):EL476-82. PubMed ID: 26093458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio study of the elastic properties of single and polycrystal TiO(2), ZrO(2) and HfO(2) in the cotunnite structure.
    Caravaca MA; Miño JC; Pérez VJ; Casali RA; Ponce CA
    J Phys Condens Matter; 2009 Jan; 21(1):015501. PubMed ID: 21817222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.