These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31046346)

  • 1. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI.
    Schickhofer L; Malinen J; Mihaescu M
    J Acoust Soc Am; 2019 Apr; 145(4):2049. PubMed ID: 31046346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of glottis-interior sources in the production of voiced sound.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the ventricular folds on a voice source with specified vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2010 Mar; 127(3):1519-27. PubMed ID: 20329852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach.
    Lodermeyer A; Bagheri E; Kniesburges S; Näger C; Probst J; Döllinger M; Becker S
    J Acoust Soc Am; 2021 Nov; 150(5):3485. PubMed ID: 34852620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of vortical flow structures on the glottal jet location in the supraglottal region.
    Kniesburges S; Hesselmann C; Becker S; Schlücker E; Döllinger M
    J Voice; 2013 Sep; 27(5):531-44. PubMed ID: 23911009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the pulsating jet flow through a dynamic glottal model with a lens-like constriction.
    Mattheus W; Brücker C
    Biomed Eng Lett; 2018 Aug; 8(3):309-320. PubMed ID: 30603215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS.
    Howe MS; McGowan RS
    Fluid Dyn Res; 2010 Jan; 42(1):15001. PubMed ID: 20419082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex Formation Times in the Glottal Jet, Measured in a Scaled-Up Model.
    Krane M
    Fluids (Basel); 2021 Nov; 6(11):. PubMed ID: 34840965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subglottal Impedance-Based Inverse Filtering of Voiced Sounds Using Neck Surface Acceleration.
    Zañartu M; Ho JC; Mehta DD; Hillman RE; Wodicka GR
    IEEE Trans Audio Speech Lang Process; 2013 Sep; 21(9):1929-1939. PubMed ID: 25400531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH; Wei T
    J Acoust Soc Am; 2006 Sep; 120(3):1578-88. PubMed ID: 17004480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aeroacoustic production of low-frequency unvoiced speech sounds.
    Krane MH
    J Acoust Soc Am; 2005 Jul; 118(1):410-27. PubMed ID: 16119362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.