These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31046360)

  • 1. Acoustic pressure field estimation methods for synthetic schlieren tomography.
    Koponen E; Leskinen J; Tarvainen T; Pulkkinen A
    J Acoust Soc Am; 2019 Apr; 145(4):2470. PubMed ID: 31046360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound field characterization using synthetic schlieren tomography.
    Pulkkinen A; Leskinen JJ; Tiihonen A
    J Acoust Soc Am; 2017 Jun; 141(6):4600. PubMed ID: 28679248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Technique for Visualizing Ultrasound Fields Without Schlieren Optics.
    Kudo N
    Ultrasound Med Biol; 2015 Jul; 41(7):2071-81. PubMed ID: 25842256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear estimation of pressure projection of ultrasound fields in background-oriented schlieren imaging.
    Koponen E; Leskinen J; Tarvainen T; Pulkkinen A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):552-562. PubMed ID: 35471377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography.
    Wang K; Ermilov SA; Su R; Brecht HP; Oraevsky AA; Anastasio MA
    IEEE Trans Med Imaging; 2011 Feb; 30(2):203-14. PubMed ID: 20813634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-modal acousto-optic/ultrasound imaging of ex vivo liver tumors at 790 nm using a Sn2 P2 S6 wavefront adaptive holographic setup.
    Laudereau JB; À La Guillaume EB; Servois V; Mariani P; Grabar AA; Tanter M; Gennisson JL; Ramaz F
    J Biophotonics; 2015 May; 8(5):429-36. PubMed ID: 25236956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased SNR in acousto-optic imaging via coded ultrasound transmission.
    Levi A; Monin S; Hahamovich E; Lev A; Sfez BG; Rosenthal A
    Opt Lett; 2020 May; 45(10):2858-2861. PubMed ID: 32412486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of x-ray-induced acoustic imaging for absolute dosimetry: Accuracy of image reconstruction methods.
    Forghani F; Mahl A; Patton TJ; Jones BL; Borden MA; Westerly DC; Altunbas C; Miften M; Thomas DH
    Med Phys; 2020 Mar; 47(3):1280-1290. PubMed ID: 31828781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers.
    Huijssen J; Verweij MD
    J Acoust Soc Am; 2010 Jan; 127(1):33-44. PubMed ID: 20058948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation.
    Möller D; Degen N; Dual J
    J Nanobiotechnology; 2013 Jun; 11():21. PubMed ID: 23842114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reliability study of light refractive tomography utilized for noninvasive measurement of ultrasound pressure fields.
    Chen L; Rupitsch SJ; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):915-27. PubMed ID: 22622976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic power measurement system based on acousto-optic interaction.
    He L; Zhu F; Chen Y; Duan K; Lin X; Pan Y; Tao J
    Rev Sci Instrum; 2016 May; 87(5):054903. PubMed ID: 27250458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Background-oriented schlieren sensitivity in terms of geometrical parameters of measurement setup.
    Koponen E; Leskinen J; Tarvainen T; Pulkkinen A
    J Acoust Soc Am; 2023 Dec; 154(6):3726-3736. PubMed ID: 38088747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automatic compact Schlieren imaging system for ultrasound transducer testing.
    Caliano G; Savoia AS; Iula A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2102-10. PubMed ID: 23007785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography.
    Wang LV
    Dis Markers; 2003-2004; 19(2-3):123-38. PubMed ID: 15096709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolithic bulk shear-wave acousto-optic tunable filter.
    Gnewuch H; Pannell CN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Dec; 49(12):1635-40. PubMed ID: 12546145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional optical measurement of instantaneous pressure.
    Pitts TA; Greenleaf JF
    J Acoust Soc Am; 2000 Dec; 108(6):2873-83. PubMed ID: 11144580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional multi-channel acousto-optic diffraction.
    Zhao L; Zhao Q; Zhou J; Tian S; Zhang H
    Ultrasonics; 2010 Apr; 50(4-5):512-6. PubMed ID: 20080278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-field acoustomammography using an acousto-optic sensor.
    Sandhu JS; Schmidt RA; La Rivière PJ
    Med Phys; 2009 Jun; 36(6):2324-7. PubMed ID: 19610321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.