These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31046384)

  • 1. Source directivity approximation for finite-difference time-domain simulation by estimating initial value.
    Takeuchi D; Yatabe K; Oikawa Y
    J Acoust Soc Am; 2019 Apr; 145(4):2638. PubMed ID: 31046384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Audibility of dispersion error in room acoustic finite-difference time-domain simulation as a function of simulation distance.
    Saarelma J; Botts J; Hamilton B; Savioja L
    J Acoust Soc Am; 2016 Apr; 139(4):1822. PubMed ID: 27106330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.
    Xie Y; Yin W; Liu Z; Peyton A
    Ultrasonics; 2016 Mar; 66():154-165. PubMed ID: 26596420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation.
    Jeong H; Lam YW
    J Acoust Soc Am; 2012 Jan; 131(1):258-68. PubMed ID: 22280589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation.
    Ostashev VE; Wilson DK; Liu L; Aldridge DF; Symons NP; Marlin D
    J Acoust Soc Am; 2005 Feb; 117(2):503-17. PubMed ID: 15759672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating source directivity in wave-based virtual acoustics: Time-domain models and fitting to measured data.
    Bilbao S; Ahrens J; Hamilton B
    J Acoust Soc Am; 2019 Oct; 146(4):2692. PubMed ID: 31671973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating directivity in the Fourier pseudospectral time-domain method using spherical harmonics.
    Georgiou F; Hornikx M
    J Acoust Soc Am; 2016 Aug; 140(2):855. PubMed ID: 27586717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source and listener directivity for interactive wave-based sound propagation.
    Mehra R; Antani L; Kim S; Manocha D
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):495-503. PubMed ID: 24650976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directive sources in acoustic discrete-time domain simulations based on directivity diagrams.
    Escolano J; López JJ; Pueo B
    J Acoust Soc Am; 2007 Jun; 121(6):EL256-62. PubMed ID: 17552578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme.
    Kong F; Li K; Liu X
    Opt Express; 2006 Nov; 14(24):11796-803. PubMed ID: 19529602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.
    Wang Z; Zhou X
    J Acoust Soc Am; 2016 Dec; 140(6):4276. PubMed ID: 28039989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equations for finite-difference, time-domain simulation of sound propagation in moving media with arbitrary Mach numbers.
    Ostashev VE; Van Renterghem T
    J Acoust Soc Am; 2023 Apr; 153(4):2203. PubMed ID: 37092910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional sound source modeling using the adjoint Euler equations in a finite-difference time-domain approach.
    Stein L; Straube F; Weinzierl S; Lemke M
    J Acoust Soc Am; 2020 Nov; 148(5):3075. PubMed ID: 33261372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method.
    Hirono T; Yoshikuni Y
    Appl Opt; 2007 Mar; 46(9):1514-24. PubMed ID: 17334444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media.
    Liu QH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.
    Park J; Jung KY
    Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional finite-difference time-domain formulation for sound propagation in a temperature-dependent elastomer-fluid medium.
    Huang Y; Hou H; Oterkus S; Wei Z; Gao N
    J Acoust Soc Am; 2020 Jan; 147(1):428. PubMed ID: 32007005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.