BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31047060)

  • 1. Storage stability of encapsulated ascorbyl palmitate in normal and high amylose maize starches during pasting and spray dryin.
    Bamidele OP; Emmambux MN
    Carbohydr Polym; 2019 Jul; 216():217-223. PubMed ID: 31047060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation and antioxidant activity of ascorbyl palmitate with maize starch during pasting.
    Bamidele OP; Duodu KG; Emmambux MN
    Carbohydr Polym; 2017 Jun; 166():202-208. PubMed ID: 28385224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of ascorbyl palmitate in corn starch matrix by extrusion cooking: Release behavior and antioxidant activity.
    Bamidele OP; Amiri-Rigi A; Emmambux MN
    Food Chem; 2023 Jan; 399():133981. PubMed ID: 36029671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of the antioxidant ascorbyl palmitate in V-type granular cold-water swelling starch affects the properties of both.
    Dries DM; Knaepen L; Goderis B; Delcour JA
    Carbohydr Polym; 2017 Jun; 165():402-409. PubMed ID: 28363566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose.
    Kong L; Ziegler GR
    Carbohydr Polym; 2014 Oct; 111():256-63. PubMed ID: 25037350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.
    Wokadala OC; Ray SS; Emmambux MN
    Carbohydr Polym; 2012 Sep; 90(1):616-22. PubMed ID: 24751084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the coating formulation on enzymatic digestibility and drug release from 5-aminosalicylic acid pellets coated with mixtures of high-amylose starch and Surelease intended for colon-specific drug delivery.
    Freire C; Podczeck F; Veiga F; Sousa J
    Drug Dev Ind Pharm; 2010 Feb; 36(2):161-72. PubMed ID: 19678749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin protection against ultraviolet induced free radicals with ascorbyl palmitate in microemulsions.
    Jurkovic P; Sentjurc M; Gasperlin M; Kristl J; Pecar S
    Eur J Pharm Biopharm; 2003 Jul; 56(1):59-66. PubMed ID: 12837482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex.
    Han M; Bao W; Wu Y; Ouyang J
    Int J Biol Macromol; 2020 Nov; 162():922-930. PubMed ID: 32592784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications.
    Gopinath D; Ravi D; Rao BR; Apte SS; Renuka D; Rambhau D
    Int J Pharm; 2004 Mar; 271(1-2):95-113. PubMed ID: 15129977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of ascorbyl palmitate in topical microemulsions.
    Spiclin P; Gasperlin M; Kmetec V
    Int J Pharm; 2001 Jul; 222(2):271-9. PubMed ID: 11427357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules.
    Wang S; Wang J; Yu J; Wang S
    Food Chem; 2014 Dec; 164():332-8. PubMed ID: 24996342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches.
    Shrestha AK; Blazek J; Flanagan BM; Dhital S; Larroque O; Morell MK; Gilbert EP; Gidley MJ
    Carbohydr Polym; 2015 Mar; 118():224-34. PubMed ID: 25542128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.
    Shrestha AK; Blazek J; Flanagan BM; Dhital S; Larroque O; Morell MK; Gilbert EP; Gidley MJ
    Carbohydr Polym; 2012 Sep; 90(1):23-33. PubMed ID: 24751006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-dried high-amylose sodium carboxymethyl starch: impact of α-amylase on drug-release profile.
    Nabais T; Zaraa S; Leclair G
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1887-93. PubMed ID: 27109692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the molecular structure of the amylopectin fraction isolated from "high-amylose" ae maize starches.
    Peymanpour G; Marcone M; Ragaee S; Tetlow I; Lane CC; Seetharaman K; Bertoft E
    Int J Biol Macromol; 2016 Oct; 91():768-77. PubMed ID: 27296443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of internal structure of maize starch without amylose and amylopectin separation.
    Zhu F; Bertoft E; Seetharaman K
    Carbohydr Polym; 2013 Sep; 97(2):475-81. PubMed ID: 23911473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment.
    Chen X; Du X; Chen P; Guo L; Xu Y; Zhou X
    Carbohydr Polym; 2017 Feb; 157():637-642. PubMed ID: 27987972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.
    Wei B; Hu X; Zhang B; Li H; Xu X; Jin Z; Tian Y
    Int J Biol Macromol; 2013 Nov; 62():652-6. PubMed ID: 24125833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.