These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A fully derivatized 4-chlorophenylcarbamate-β-cyclodextrin bonded chiral stationary phase for enhanced enantioseparation in HPLC. Sun J; Ma S; Liu B; Yu J; Guo X Talanta; 2019 Nov; 204():817-825. PubMed ID: 31357369 [TBL] [Abstract][Full Text] [Related]
3. Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases. Li X; Zhou Z Anal Chim Acta; 2014 Mar; 819():122-9. PubMed ID: 24636420 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Dong S; Bi Q; Qiao C; Sun Y; Zhang X; Lu X; Zhao L Talanta; 2017 Oct; 173():94-100. PubMed ID: 28602197 [TBL] [Abstract][Full Text] [Related]
5. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography. Wu Q; Sun Y; Zhang X; Zhang X; Dong S; Qiu H; Wang L; Zhao L J Chromatogr A; 2017 Apr; 1492():61-69. PubMed ID: 28284766 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin as chiral stationary phases for high-performance liquid chromatography. Poon YF; Muderawan IW; Ng SC J Chromatogr A; 2006 Jan; 1101(1-2):185-97. PubMed ID: 16236286 [TBL] [Abstract][Full Text] [Related]
7. Enantioseparation characteristics of biselector chiral stationary phases based on derivatives of cellulose and amylose. Wang ZQ; Liu JD; Chen W; Bai ZW J Chromatogr A; 2014 Jun; 1346():57-68. PubMed ID: 24792697 [TBL] [Abstract][Full Text] [Related]
8. [Preparation and enantioseparation performance of β-cyclodextrin-silica hybrid chiral stationary phases]. Wang L; Dong S; Zhang Zhixin ; Wang Y; Zhang X; Zhang X; Zhang P; Zhao L Se Pu; 2016 Jan; 34(1):89-95. PubMed ID: 27319171 [TBL] [Abstract][Full Text] [Related]
9. Anhydride-linked β-cyclodextrin-bonded silica stationary phases with enhanced chiral separation ability in liquid chromatography. Wang X; Li H; Quan K; Zhao L; Li Z; Qiu H J Chromatogr A; 2021 Aug; 1651():462338. PubMed ID: 34153735 [TBL] [Abstract][Full Text] [Related]
10. Preparation and evaluation of a novel N-benzyl-phenethylamino-β-cyclodextrin-bonded chiral stationary phase for HPLC. Li L; Cheng B; Zhou R; Cao Z; Zeng C; Li L Talanta; 2017 Nov; 174():179-191. PubMed ID: 28738566 [TBL] [Abstract][Full Text] [Related]
11. Enantioseparation and molecular modeling study of chiral amines as three naphthaldimine derivatives using amylose or cellulose trisphenylcarbamate chiral stationary phases. Adhikari S; Bhujbal S; Paik MJ; Lee W Chirality; 2023 Jan; 35(1):29-39. PubMed ID: 36323631 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Yan YL; Guo D; Wu JL; Tang XH; Luo JJ; Li SQ; Fan J; Zheng SR; Zhang WG; Cai SL J Chromatogr A; 2022 Jul; 1675():463155. PubMed ID: 35635867 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of cellulose 3,5-dimethylphenylcarbamate silica hybrid spheres for enantioseparation of chiral β-blockers. Weng X; Bao Z; Xing H; Zhang Z; Yang Q; Su B; Yang Y; Ren Q J Chromatogr A; 2013 Dec; 1321():38-47. PubMed ID: 24231262 [TBL] [Abstract][Full Text] [Related]
14. Preparation and enantioseparation characteristics of a novel β-cyclodextrin derivative chiral stationary phase in high-performance liquid chromatography. Zhou J; Pei W; Zheng X; Zhao S; Zhang Z J Chromatogr Sci; 2015; 53(5):676-9. PubMed ID: 25358854 [TBL] [Abstract][Full Text] [Related]
15. "Click" immobilized perphenylcarbamated and permethylated cyclodextrin stationary phases for chiral high-performance liquid chromatography application. Wang Y; Young DJ; Tan TT; Ng SC J Chromatogr A; 2010 Jul; 1217(31):5103-8. PubMed ID: 20579654 [TBL] [Abstract][Full Text] [Related]
16. Wide pH range enantioseparation of cyclodextrin silica-based hybrid spheres for high performance liquid chromatography. Wang L; Lv M; Pei D; Wang Y; Wang Q; Sun S; Wang H J Chromatogr A; 2019 Jun; 1595():73-80. PubMed ID: 30819436 [TBL] [Abstract][Full Text] [Related]
17. Chiral Graphene Quantum Dots. Suzuki N; Wang Y; Elvati P; Qu ZB; Kim K; Jiang S; Baumeister E; Lee J; Yeom B; Bahng JH; Lee J; Violi A; Kotov NA ACS Nano; 2016 Feb; 10(2):1744-55. PubMed ID: 26743467 [TBL] [Abstract][Full Text] [Related]
18. Preparation and enantioseparation characteristics of a novel chiral stationary phase based on mono (6(A)-azido-6(A)-deoxy)-per(p-chlorophenylcarbamoylated) beta-cyclodextrin. Zhang ZB; Zhang WG; Luo WJ; Fan J J Chromatogr A; 2008 Dec; 1213(2):162-8. PubMed ID: 18980772 [TBL] [Abstract][Full Text] [Related]
19. Enantiomeric separation in high-performance liquid chromatography using novel β-cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases. Li X; Zhou ZM; Xu D; Zhang J Talanta; 2011 May; 84(4):1080-92. PubMed ID: 21530782 [TBL] [Abstract][Full Text] [Related]
20. HPLC Enantioseparation on Cyclodextrin-Based Chiral Stationary Phases. Li X; Wang Y Methods Mol Biol; 2019; 1985():159-169. PubMed ID: 31069734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]