BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31047772)

  • 1. Gain-of-Function Mutations: An Emerging Advantage for Cancer Biology.
    Li Y; Zhang Y; Li X; Yi S; Xu J
    Trends Biochem Sci; 2019 Aug; 44(8):659-674. PubMed ID: 31047772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain-of-Function Variomics and Multi-omics Network Biology for Precision Medicine.
    Li MM; Awasthi S; Ghosh S; Bisht D; Coban Akdemir ZH; Sheynkman GM; Sahni N; Yi SS
    Methods Mol Biol; 2023; 2660():357-372. PubMed ID: 37191809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.
    Cheng F; Zhao J; Zhao Z
    Brief Bioinform; 2016 Jul; 17(4):642-56. PubMed ID: 26307061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genomic features in the classification of loss- and gain-of-function mutation.
    Jung S; Lee S; Kim S; Nam H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 1(Suppl 1):S6. PubMed ID: 26043747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional variomics and network perturbation: connecting genotype to phenotype in cancer.
    Yi S; Lin S; Li Y; Zhao W; Mills GB; Sahni N
    Nat Rev Genet; 2017 Jul; 18(7):395-410. PubMed ID: 28344341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depleting stabilized GOF mutant p53 proteins by inhibiting molecular folding chaperones: a new promise in cancer therapy.
    Alexandrova EM; Moll UM
    Cell Death Differ; 2017 Jan; 24(1):3-5. PubMed ID: 27935583
    [No Abstract]   [Full Text] [Related]  

  • 7. The pan-cancer analysis of gain-of-functional mutations to identify the common oncogenic signatures in multiple cancers.
    Wee Y; Liu Y; Bhyan SB; Lu J; Zhao M
    Gene; 2019 May; 697():57-66. PubMed ID: 30796966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance.
    Stiewe T; Haran TE
    Drug Resist Updat; 2018 May; 38():27-43. PubMed ID: 29857816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annotation of Variant Data from High-Throughput DNA Sequencing from Tumor Specimens: Filtering Strategies to Identify Driver Mutations.
    Sun S; Thorson JA; Murray SS
    Methods Mol Biol; 2019; 1908():49-60. PubMed ID: 30649720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants.
    Kagawa R; Fujiki R; Tsumura M; Sakata S; Nishimura S; Itan Y; Kong XF; Kato Z; Ohnishi H; Hirata O; Saito S; Ikeda M; El Baghdadi J; Bousfiha A; Fujiwara K; Oleastro M; Yancoski J; Perez L; Danielian S; Ailal F; Takada H; Hara T; Puel A; Boisson-Dupuis S; Bustamante J; Casanova JL; Ohara O; Okada S; Kobayashi M
    J Allergy Clin Immunol; 2017 Jul; 140(1):232-241. PubMed ID: 28011069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition.
    Olotu FA; Soliman MES
    J Cell Biochem; 2018 Mar; 119(3):2646-2652. PubMed ID: 29058783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.
    Mercatanti A; Lodovichi S; Cervelli T; Galli A
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a distinct subset of disease-associated gain-of-function missense mutations in the STAT1 coiled-coil domain as system mutants.
    Petersen J; Staab J; Bader O; Buhl T; Ivetic A; Meyer T
    Mol Immunol; 2019 Oct; 114():30-40. PubMed ID: 31336247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-resolution stratification of cancer mutations using functional variomics.
    Yi S; Liu NN; Hu L; Wang H; Sahni N
    Nat Protoc; 2017 Nov; 12(11):2323-2341. PubMed ID: 28981122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach.
    Karageorgos I; Mizzi C; Giannopoulou E; Pavlidis C; Peters BA; Zagoriti Z; Stenson PD; Mitropoulos K; Borg J; Kalofonos HP; Drmanac R; Stubbs A; van der Spek P; Cooper DN; Katsila T; Patrinos GP
    Hum Genomics; 2015 Jun; 9(1):12. PubMed ID: 26092435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.