These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31048166)

  • 1. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment.
    López-Pacheco IY; Carrillo-Nieves D; Salinas-Salazar C; Silva-Núñez A; Arévalo-Gallegos A; Barceló D; Afewerki S; Iqbal HMN; Parra-Saldívar R
    Sci Total Environ; 2019 Aug; 676():356-367. PubMed ID: 31048166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorella vulgaris-mediated bioremediation of food and beverage wastewater from industries in Mexico: Results and perspectives towards sustainability and circular economy.
    Najar-Almanzor CE; Velasco-Iglesias KD; Solis-Bañuelos M; González-Díaz RL; Guerrero-Higareda S; Fuentes-Carrasco OJ; García-Cayuela T; Carrillo-Nieves D
    Sci Total Environ; 2024 Aug; 940():173753. PubMed ID: 38838494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage.
    Wen Y; He Y; Ji X; Li S; Chen L; Zhou Y; Wang M; Chen B
    Bioresour Technol; 2017 Nov; 243():247-253. PubMed ID: 28672187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.
    Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS
    Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: Optimization of nutrient removal and biomass production.
    Markou G
    Bioresour Technol; 2015 Oct; 193():35-41. PubMed ID: 26117233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04.
    Ji MK; Kim HC; Sapireddy VR; Yun HS; Abou-Shanab RA; Choi J; Lee W; Timmes TC; Inamuddin ; Jeon BH
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2701-10. PubMed ID: 22569638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater.
    Cao L; Zhou T; Li Z; Wang J; Tang J; Ruan R; Liu Y
    Bioresour Technol; 2018 Sep; 263():10-16. PubMed ID: 29723844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.
    Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae and immobilized TiO
    Marchão L; Fernandes JR; Sampaio A; Peres JA; Tavares PB; Lucas MS
    Water Res; 2021 Sep; 203():117464. PubMed ID: 34371233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption.
    Markou G; Depraetere O; Vandamme D; Muylaert K
    Int J Mol Sci; 2015 Feb; 16(2):4250-64. PubMed ID: 25690037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.
    Lee YR; Chen JJ
    Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Navigating the waters of nixtamalization: Sustainable solutions for maize-processing wastewater treatment.
    Valenzuela EI; Gutiérrez-Uribe JA; Franco-Morgado M; Cervantes-Avilés P
    Sci Total Environ; 2024 Feb; 911():168674. PubMed ID: 38007134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters.
    He PJ; Mao B; Lü F; Shao LM; Lee DJ; Chang JS
    Bioresour Technol; 2013 Oct; 146():562-568. PubMed ID: 23973976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.
    Mujtaba G; Lee K
    Water Res; 2017 Sep; 120():174-184. PubMed ID: 28486168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate.
    Mohseni A; Kube M; Fan L; Roddick FA
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26905-26914. PubMed ID: 32382902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris.
    Szwarc K; Szwarc D; Zieliński M
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swine wastewater treatment by combined process of iron carbon microelectrolysis-physical adsorption-microalgae cultivation.
    Zhang W; Xia R; Wang H; Pu S; Jiang D; Hao X; Bai L
    Water Sci Technol; 2022 Feb; 85(3):914-924. PubMed ID: 35166710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.