These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 3104817)

  • 1. Experimental carbon dioxide laser brain lesions and intracranial dynamics: Part 3. Effect on cerebral blood flow.
    James HE; Schneider S; Bhasin S
    Neurosurgery; 1987 Feb; 20(2):219-21. PubMed ID: 3104817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental carbon dioxide laser brain lesions and intracranial dynamics: Part 1. Effect on intracranial pressure, systemic arterial pressure, central venous pressure, electroencephalography, and gross pathology.
    Tiznado E; James HE; Kemper C
    Neurosurgery; 1985 Jan; 16(1):5-8. PubMed ID: 3919330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental study on the effects of DMSO and indomethacin on cerebral circulation and intracranial pressure.
    Tung H; James HE; Drummond JC; Moore S
    Brain Res Bull; 1986 Sep; 17(3):391-3. PubMed ID: 3768741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of fentanyl and sufentanil on intracranial pressure and cerebral blood flow in rabbits with an acute cryogenic brain injury.
    Sheehan PB; Zornow MH; Scheller MS; Peterson BM
    J Neurosurg Anesthesiol; 1992 Oct; 4(4):261-7. PubMed ID: 15815475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental carbon dioxide laser brain lesions and intracranial dynamics: Part 2. Effect on brain water content and its response to acute therapy.
    Tiznado EG; James HE; Moore S
    Neurosurgery; 1985 Apr; 16(4):454-7. PubMed ID: 3990925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of brain edema and effects on local cerebral blood flow.
    Marmarou A; Takagi H; Shulman K
    Adv Neurol; 1980; 28():345-58. PubMed ID: 7457251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryogenic brain oedema: loss of cerebrovascular autoregulation as a cause of intracranial hypertension. Implications for treatment.
    James HE; Schneider S
    Acta Neurochir Suppl (Wien); 1990; 51():79-81. PubMed ID: 2089960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow in the monkey after focal cryogenic injury.
    Martins AN; Doyle TF
    Stroke; 1978; 9(5):509-13. PubMed ID: 100908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dose effect of propofol on cerebrovascular reactivity to carbon dioxide in rabbits.
    Kang FC; Chang PJ; Wang LK; Sung YH; Chen TY; Tsai YC
    Acta Anaesthesiol Sin; 1999 Mar; 37(1):3-8. PubMed ID: 10407520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute dimethyl sulfoxide therapy in experimental brain edema: Part I. Effects on intracranial pressure, blood pressure, central venous pressure, and brain water and electrolyte content.
    Camp PE; James HE; Werner R
    Neurosurgery; 1981 Jul; 9(1):28-33. PubMed ID: 7279169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow regulation during experimental brain compression.
    Miller JD; Stanek AE; Langfitt TW
    J Neurosurg; 1973 Aug; 39(2):186-96. PubMed ID: 4719697
    [No Abstract]   [Full Text] [Related]  

  • 12. Raised intracranial pressure and cerebral blood flow. 4. Intracranial pressure gradients and regional cerebral blood flow.
    Johnston IH; Rowan JO
    J Neurol Neurosurg Psychiatry; 1974 May; 37(5):585-92. PubMed ID: 4836754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema.
    Miller JD; Ledingham IM; Jennett WB
    J Neurol Neurosurg Psychiatry; 1970 Dec; 33(6):745-55. PubMed ID: 5497875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of decompressive hypoperfusion and cerebral edema by superoxide dismutase.
    Schettini A; Lippman RH; Walsh EK
    J Neurosurg; 1989 Oct; 71(4):578-87. PubMed ID: 2552047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increased arterial pressure on blood flow in the damaged brain.
    Miller JD; Garibi J; North JB; Teasdale GM
    J Neurol Neurosurg Psychiatry; 1975 Jul; 38(7):657-65. PubMed ID: 1159437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local cerebral blood flow measured by xenon-enhanced CT during cryogenic brain edema and intracranial hypertension in monkeys.
    Darby JM; Nemoto EM; Yonas H; Yao L; Melick JA; Boston JR
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):763-72. PubMed ID: 8360283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular reactivity in the primate brain after acute cryogenic injury.
    Reilly PL; Farrar JK; Miller JD
    J Neurol Neurosurg Psychiatry; 1977 Nov; 40(11):1092-1101. PubMed ID: 413885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in cerebral extracellular pH, cerebral blood flow and intracranial pressure induced by hypercarbic ventilation--assessment as a potential in vivo model of cerebral acidosis].
    Niiro M; Kadota K; Asakura T; Simon RP
    No To Shinkei; 1994 Jul; 46(7):639-45. PubMed ID: 7946619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of cerebrovascular autoregulation in experimental meningitis in rabbits.
    Tureen JH; Dworkin RJ; Kennedy SL; Sachdeva M; Sande MA
    J Clin Invest; 1990 Feb; 85(2):577-81. PubMed ID: 2105342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of a cryogenic brain injury on the cerebrovascular response to isoflurane in the rabbit.
    Ramani R; Todd MM; Warner DS
    J Cereb Blood Flow Metab; 1991 May; 11(3):388-97. PubMed ID: 2016346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.