These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31048200)

  • 21. Chemical and radiological characterization of fly and bottom ash landfill of the former sulfate pulp factory Plaški and its surroundings.
    Oreščanin V; Kollar R; Buben K; Mikelic IL; Kollar K; Kollar M; Medunic G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1592-606. PubMed ID: 22702819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of heterogeneity in gamma-ray albedo analysis of mineral raw materials.
    Pak YuN ; Vdovkin AV; Borodachyov AD
    Appl Radiat Isot; 2001 Mar; 54(3):509-17. PubMed ID: 11214888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherent scattering and bone mineral measurement: the dependence of sensitivity on angle and energy.
    Ndlovu AM; Farrell TJ; Webber CE
    Med Phys; 1991; 18(5):985-9. PubMed ID: 1961164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Albedo factors of some elements in the atomic number range 26≤Z≤79 for 59.54keV.
    Yılmaz D; Uzunoğlu Z; Demir C
    Appl Radiat Isot; 2017 Apr; 122():68-71. PubMed ID: 28110024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.
    Mandal AK; Paramkusam BR; Sinha OP
    Waste Manag Res; 2018 Apr; 36(4):351-360. PubMed ID: 29595099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of tissue via coherent-to-Compton scattering ratio: sensitivity considerations.
    Karellas A; Leichter I; Craven JD; Greenfield MA
    Med Phys; 1983; 10(5):605-9. PubMed ID: 6646064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The Study of Spectral Characteristic of Coal Ash from Different Sources with Laser-Induced Breakdown Spectroscopy].
    Shen YL; Lu JD; Zhang B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4058-62. PubMed ID: 30256556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.
    Santhanam CJ; Lunt RR; Johnson SL; Cooper CB; Thayer PS; Jones JW
    Environ Health Perspect; 1979 Dec; 33():131-57. PubMed ID: 540614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of a remediated coal ash depository from a radiological perspective.
    Jónás J; Somlai J; Tóth-Bodrogi E; Hegedűs M; Kovács T
    J Environ Radioact; 2017 Jul; 173():75-84. PubMed ID: 28041855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accounting for the multiple-scattering effect in radiation intensities at the top of the atmosphere.
    Jayaraman A; Koepke P
    Appl Opt; 1992 Jun; 31(18):3473-80. PubMed ID: 20725314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples.
    Roper AR; Stabin MG; Delapp RC; Kosson DS
    Health Phys; 2013 Mar; 104(3):264-9. PubMed ID: 23361421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.
    Haninger T; Fehrenbacher G
    Radiat Prot Dosimetry; 2007; 125(1-4):361-3. PubMed ID: 17766258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal.
    Alvarez-Ayuso E; Querol X
    Chemosphere; 2008 Mar; 71(1):140-6. PubMed ID: 18063008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beneficiation of coal pond ash by physical separation techniques.
    Lee SJ; Cho HC; Kwon JH
    J Environ Manage; 2012 Aug; 104():77-84. PubMed ID: 22484657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerosol features retrieved from solar aureole data: a simulation study concerning a turbid atmosphere.
    Tonna G; Nakajima T; Rao R
    Appl Opt; 1995 Jul; 34(21):4486-99. PubMed ID: 21052282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis.
    Yao S; Lu J; Dong M; Chen K; Li J; Li J
    Appl Spectrosc; 2011 Oct; 65(10):1197-201. PubMed ID: 21986081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Coherent and Diffuse Scattering Using a Reference Phantom.
    Rosado-Mendez IM; Drehfal LC; Zagzebski JA; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1306-20. PubMed ID: 27046872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays.
    Classen A; Ayyer K; Chapman HN; Röhlsberger R; von Zanthier J
    Phys Rev Lett; 2017 Aug; 119(5):053401. PubMed ID: 28949712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing and uses of fly ash addressing radioactivity (critical review).
    Temuujin J; Surenjav E; Ruescher CH; Vahlbruch J
    Chemosphere; 2019 Feb; 216():866-882. PubMed ID: 30390998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiological and material characterization of high volume fly ash concrete.
    Ignjatović I; Sas Z; Dragaš J; Somlai J; Kovács T
    J Environ Radioact; 2017 Mar; 168():38-45. PubMed ID: 27400654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.