These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31048400)

  • 1. Genetically Distinct Behavioral Modules Underlie Natural Variation in Thermal Performance Curves.
    Stegeman GW; Baird SE; Ryu WS; Cutter AD
    G3 (Bethesda); 2019 Jul; 9(7):2135-2151. PubMed ID: 31048400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting thermal performance curve variation to the genotype: a multivariate QTL approach.
    Latimer CA; Foley BR; Chenoweth SF
    J Evol Biol; 2015 Jan; 28(1):155-68. PubMed ID: 25403928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of Intraspecies Variation in Avoidance Behavior Induced by a Thermal Stimulus in Caenorhabditis elegans.
    Ghosh R; Bloom JS; Mohammadi A; Schumer ME; Andolfatto P; Ryu W; Kruglyak L
    Genetics; 2015 Aug; 200(4):1327-39. PubMed ID: 26092720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping and Predicting Non-Linear
    Baker RL; Leong WF; Welch S; Weinig C
    G3 (Bethesda); 2018 Mar; 8(4):1247-1258. PubMed ID: 29467188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More than the sum of its parts: a complex epistatic network underlies natural variation in thermal preference behavior in Caenorhabditis elegans.
    Gaertner BE; Parmenter MD; Rockman MV; Kruglyak L; Phillips PC
    Genetics; 2012 Dec; 192(4):1533-42. PubMed ID: 23086219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linkage mapping reveals loci that underlie differences in Caenorhabditis elegans growth.
    Nyaanga J; Andersen EC
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35961034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis.
    Sanchez-Bermejo E; Zhu W; Tasset C; Eimer H; Sureshkumar S; Singh R; Sundaramoorthi V; Colling L; Balasubramanian S
    Plant Physiol; 2015 Sep; 169(1):647-59. PubMed ID: 26195568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-genetic plasticity of Caenorhabditis elegans behavioral thermal tolerance.
    Stegeman GW; Medina D; Cutter AD; Ryu WS
    BMC Neurosci; 2019 Jun; 20(1):26. PubMed ID: 31182018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-locus Genotypes Underlying Temperature Sensitivity in a Mutationally Induced Trait.
    Lee JT; Taylor MB; Shen A; Ehrenreich IM
    PLoS Genet; 2016 Mar; 12(3):e1005929. PubMed ID: 26990313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.
    Stegeman GW; de Mesquita MB; Ryu WS; Cutter AD
    J Exp Biol; 2013 Mar; 216(Pt 5):850-8. PubMed ID: 23155083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Architecture of
    Benowitz KM; Coleman JM; Matzkin LM
    G3 (Bethesda); 2019 May; 9(5):1767-1775. PubMed ID: 30926724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping Quantitative Trait Loci Underlying Function-Valued Traits Using Functional Principal Component Analysis and Multi-Trait Mapping.
    Kwak IY; Moore CR; Spalding EP; Broman KW
    G3 (Bethesda); 2015 Nov; 6(1):79-86. PubMed ID: 26530421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits.
    Knoll AT; Jiang K; Levitt P
    Genes Brain Behav; 2018 Jun; 17(5):e12431. PubMed ID: 29052939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic variation, simplicity, and evolutionary constraints for function-valued traits.
    Kingsolver JG; Heckman N; Zhang J; Carter PA; Knies JL; Stinchcombe JR; Meyer K
    Am Nat; 2015 Jun; 185(6):E166-81. PubMed ID: 25996868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates.
    Kingsolver JG; Ragland GJ; Shlichta JG
    Evolution; 2004 Jul; 58(7):1521-9. PubMed ID: 15341154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative genetic analysis of transcription modules: towards filling the gap between genetic loci and inherited traits.
    Li H; Chen H; Bao L; Manly KF; Chesler EJ; Lu L; Wang J; Zhou M; Williams RW; Cui Y
    Hum Mol Genet; 2006 Feb; 15(3):481-92. PubMed ID: 16371421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits.
    Snoek BL; Volkers RJM; Nijveen H; Petersen C; Dirksen P; Sterken MG; Nakad R; Riksen JAG; Rosenstiel P; Stastna JJ; Braeckman BP; Harvey SC; Schulenburg H; Kammenga JE
    BMC Biol; 2019 Mar; 17(1):24. PubMed ID: 30866929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.
    Fournier-Level A; Le Cunff L; Gomez C; Doligez A; Ageorges A; Roux C; Bertrand Y; Souquet JM; Cheynier V; This P
    Genetics; 2009 Nov; 183(3):1127-39. PubMed ID: 19720862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of quantitative trait loci that influence animal behavior.
    Flint J
    J Neurobiol; 2003 Jan; 54(1):46-77. PubMed ID: 12486698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.
    Baker RL; Leong WF; Brock MT; Markelz RJ; Covington MF; Devisetty UK; Edwards CE; Maloof J; Welch S; Weinig C
    New Phytol; 2015 Oct; 208(1):257-68. PubMed ID: 26083847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.