These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 31048686)
21. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau]. Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255 [TBL] [Abstract][Full Text] [Related]
22. Merging framework for estimating daily surface air temperature by integrating observations from multiple polar-orbiting satellites. Zhang Z; Du Q Sci Total Environ; 2022 Mar; 812():152538. PubMed ID: 34953831 [TBL] [Abstract][Full Text] [Related]
23. The potential of Pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications. Green RM; Hay SI Remote Sens Environ; 2002 Feb; 79(2-3):166-175. PubMed ID: 22581983 [TBL] [Abstract][Full Text] [Related]
24. Intercomparison of In Situ Sensors for Ground-Based Land Surface Temperature Measurements. Krishnan P; Meyers TP; Hook SJ; Heuer M; Senn D; Dumas EJ Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942619 [TBL] [Abstract][Full Text] [Related]
25. Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Cheng J; Song C; Liu K; Fan C; Ke L; Chen T; Zhan P; Yao J Sci Total Environ; 2022 Jan; 802():149928. PubMed ID: 34464806 [TBL] [Abstract][Full Text] [Related]
26. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Liu L; Zhang X; Donnelly A; Liu X Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843 [TBL] [Abstract][Full Text] [Related]
27. Assessments of various precipitation product performances and disaster monitoring utilities over the Tibetan Plateau. Ding Y; Wang F; Lu Z; Sun P; Wei R; Zhou L; Ao T Sci Rep; 2024 Aug; 14(1):19740. PubMed ID: 39187512 [TBL] [Abstract][Full Text] [Related]
28. Lake volume variation in the endorheic basin of the Tibetan Plateau from 1989 to 2019. Wang J; Wang L; Li M; Zhu L; Li X Sci Data; 2022 Oct; 9(1):611. PubMed ID: 36209146 [TBL] [Abstract][Full Text] [Related]
29. Annual 30-m big Lake Maps of the Tibetan Plateau in 1991-2018. Zhao R; Fu P; Zhou Y; Xiao X; Grebby S; Zhang G; Dong J Sci Data; 2022 Apr; 9(1):164. PubMed ID: 35414150 [TBL] [Abstract][Full Text] [Related]
30. Lake dynamics in Tibetan Plateau during 1990-2020 and exploratory factor analyses using Google Earth Engine. Li Z; Deng F; Gong J; Xiang L; Han Y; Zheng P; Zhao E Environ Sci Pollut Res Int; 2023 Mar; 30(14):41609-41622. PubMed ID: 36635472 [TBL] [Abstract][Full Text] [Related]
31. A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave. Zhu S; Di Nunno F; Ptak M; Sojka M; Granata F Sci Total Environ; 2023 Dec; 905():167121. PubMed ID: 37717777 [TBL] [Abstract][Full Text] [Related]
32. Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations. Zhang H; Zhang F; Che T; Wang S Sci Total Environ; 2020 Jul; 724():138156. PubMed ID: 32408440 [TBL] [Abstract][Full Text] [Related]
33. MODIS Terra and Aqua images bring non-negligible effects to phytoplankton blooms derived from satellites in eutrophic lakes. Lai L; Liu Y; Zhang Y; Cao Z; Yang Q; Chen X Water Res; 2023 Nov; 246():120685. PubMed ID: 37804806 [TBL] [Abstract][Full Text] [Related]
34. Variation of satellite-derived total suspended matter in large lakes with four types of water storage across the Tibetan Plateau, China. Tao H; Song K; Liu G; Wen Z; Lu Y; Lyu L; Shang Y; Li S; Hou J; Wang Q; Wang X Sci Total Environ; 2022 Nov; 846():157328. PubMed ID: 35868401 [TBL] [Abstract][Full Text] [Related]
35. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate. Hay SI; Lennon JJ Trop Med Int Health; 1999 Jan; 4(1):58-71. PubMed ID: 10203175 [TBL] [Abstract][Full Text] [Related]
36. Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau. Sun L; Wang B; Ma Y; Shi X; Wang Y Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772699 [TBL] [Abstract][Full Text] [Related]
37. Delayed Response of Lake Area Change to Climate Change in Siling Co Lake, Tibetan Plateau, from 2003 to 2013. Yi G; Zhang T Int J Environ Res Public Health; 2015 Oct; 12(11):13886-900. PubMed ID: 26528996 [TBL] [Abstract][Full Text] [Related]
38. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Woolway RI; Merchant CJ Sci Rep; 2017 Jun; 7(1):4130. PubMed ID: 28646229 [TBL] [Abstract][Full Text] [Related]
39. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Wan W; Long D; Hong Y; Ma Y; Yuan Y; Xiao P; Duan H; Han Z; Gu X Sci Data; 2016 Jun; 3():160039. PubMed ID: 27328160 [TBL] [Abstract][Full Text] [Related]
40. A new method for accurate inversion of Forel-Ule index using MODIS images - revealing the water color evolution in China's large lakes and reservoirs over the past two decades. Xia K; Wu T; Li X; Wang S; Shen Q Water Res; 2024 May; 255():121560. PubMed ID: 38564894 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]