These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31048701)

  • 1. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging.
    Jiang Y; Huang J; Zhen X; Zeng Z; Li J; Xie C; Miao Q; Chen J; Chen P; Pu K
    Nat Commun; 2019 May; 10(1):2064. PubMed ID: 31048701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles.
    Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K
    Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for in vivo near-infrared imaging.
    Ma Z; Wang F; Wang W; Zhong Y; Dai H
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33372162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery.
    Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D
    Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging.
    Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents.
    Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z
    Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors.
    Xie C; Zhen X; Miao Q; Lyu Y; Pu K
    Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Four-In-One" Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging.
    Liu Y; Teng L; Lou XF; Zhang XB; Song G
    J Am Chem Soc; 2023 Mar; 145(9):5134-5144. PubMed ID: 36823697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive
    Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M
    J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Organic Afterglow Protheranostic Nanoassembly.
    He S; Xie C; Jiang Y; Pu K
    Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy.
    Zhen X; Xie C; Pu K
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3938-3942. PubMed ID: 29527761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies.
    Wang J; Li J; Yu J; Zhang H; Zhang B
    ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection.
    Chen C; Zhang X; Gao Z; Feng G; Ding D
    Nat Protoc; 2024 Aug; 19(8):2408-2434. PubMed ID: 38637702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescent Porous Silicon Nanoparticles for Continuous Wave and Time-Gated Photoluminescence Imaging.
    Kumeria T; Qu Z; Popat A; Altalhi T; Santos A
    Methods Mol Biol; 2019; 2054():185-198. PubMed ID: 31482457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging.
    Jiang Y; Zhao M; Miao J; Chen W; Zhang Y; Miao M; Yang L; Li Q; Miao Q
    Nat Commun; 2024 Mar; 15(1):2124. PubMed ID: 38459025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H
    Wu L; Ishigaki Y; Hu Y; Sugimoto K; Zeng W; Harimoto T; Sun Y; He J; Suzuki T; Jiang X; Chen HY; Ye D
    Nat Commun; 2020 Jan; 11(1):446. PubMed ID: 31974383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy.
    Kim D; Jeong K; Kwon JE; Park H; Lee S; Kim S; Park SY
    Nat Commun; 2019 Jul; 10(1):3089. PubMed ID: 31300649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Optical Imaging of Nucleic Acid Nanocarriers In Vivo.
    Rome C; Gravier J; Morille M; Divita G; Bolcato-Bellemin AL; Josserand V; Coll JL
    Methods Mol Biol; 2019; 1943():347-363. PubMed ID: 30838628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide Inorganic Nanoparticles Enhance Semiconducting Polymer Nanoparticles Afterglow Luminescence for In Vivo Afterglow/Magnetic Resonance Imaging.
    Wei HL; Zhang Q; Deng Z; Guan G; Dong Z; Cao H; Liang P; Lu D; Liu S; Yin X; Song G; Huan S; Zhang XB
    Anal Chem; 2024 May; 96(19):7697-7705. PubMed ID: 38697043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.