BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31048899)

  • 41. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish.
    Akimenko MA; Johnson SL; Westerfield M; Ekker M
    Development; 1995 Feb; 121(2):347-57. PubMed ID: 7768177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.
    Nornberg BF; Almeida DV; Figueiredo MA; Marins LF
    Transgenic Res; 2016 Oct; 25(5):743-9. PubMed ID: 27126069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphogen-based simulation model of ray growth and joint patterning during fin development and regeneration.
    Rolland-Lagan AG; Paquette M; Tweedle V; Akimenko MA
    Development; 2012 Mar; 139(6):1188-97. PubMed ID: 22318227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of pectoral fin outgrowth in zebrafish development.
    Yano T; Abe G; Yokoyama H; Kawakami K; Tamura K
    Development; 2012 Aug; 139(16):2916-25. PubMed ID: 22791899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio).
    Blümel R; Zink M; Klopocki E; Liedtke D
    PLoS One; 2019; 14(6):e0218286. PubMed ID: 31188878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishment of a transgenic zebrafish EF1α:Kaede for monitoring cell proliferation during regeneration.
    Moon HY; Kim OH; Kim HT; Choi JH; Yeo SY; Kim NS; Park DS; Oh HW; You KH; De Zoysa M; Kim CH
    Fish Shellfish Immunol; 2013 May; 34(5):1390-4. PubMed ID: 23470815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of Piper sarmentosum aqueous extracts on zebrafish (Danio rerio) embryos and caudal fin tissue regeneration.
    Zainol Abidin IZ; Fazry S; Jamar NH; Ediwar Dyari HR; Zainal Ariffin Z; Johari AN; Ashaari NS; Johari NA; Megat Abdul Wahab R; Zainal Ariffin SH
    Sci Rep; 2020 Aug; 10(1):14165. PubMed ID: 32843675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hoxd13 contribution to the evolution of vertebrate appendages.
    Freitas R; Gómez-Marín C; Wilson JM; Casares F; Gómez-Skarmeta JL
    Dev Cell; 2012 Dec; 23(6):1219-29. PubMed ID: 23237954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PhOTO zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration.
    Dempsey WP; Fraser SE; Pantazis P
    PLoS One; 2012; 7(3):e32888. PubMed ID: 22431986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of limb enhancers in the developing fin.
    Booker BM; Murphy KK; Ahituv N
    Dev Genes Evol; 2013 Nov; 223(6):395-9. PubMed ID: 24068387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic profiling of early regulators during tissue regeneration using zebrafish model.
    Shi L; Chen C; Yin Z; Wei G; Xie G; Liu D
    Wound Repair Regen; 2021 Jan; 29(1):189-195. PubMed ID: 32776615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration.
    Nechiporuk A; Keating MT
    Development; 2002 Jun; 129(11):2607-17. PubMed ID: 12015289
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zebrafish (
    Lebedeva L; Zhumabayeva B; Gebauer T; Kisselev I; Aitasheva Z
    Zebrafish; 2020 Dec; 17(6):359-372. PubMed ID: 33259770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration.
    DeLaurier A; Eames BF; Blanco-Sánchez B; Peng G; He X; Swartz ME; Ullmann B; Westerfield M; Kimmel CB
    Genesis; 2010 Aug; 48(8):505-11. PubMed ID: 20506187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Widening control of fin inter-rays in zebrafish and inferences about actinopterygian fins.
    Murciano C; Cazorla-Vázquez S; Gutiérrez J; Hijano JA; Ruiz-Sánchez J; Mesa-Almagro L; Martín-Reyes F; Fernández TD; Marí-Beffa M
    J Anat; 2018 May; 232(5):783-805. PubMed ID: 29441573
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evx1 is required for joint formation in zebrafish fin dermoskeleton.
    Schulte CJ; Allen C; England SJ; Juárez-Morales JL; Lewis KE
    Dev Dyn; 2011 May; 240(5):1240-8. PubMed ID: 21509898
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration.
    Laplace-Builhé B; Barthelaix A; Assou S; Bohaud C; Pratlong M; Severac D; Tejedor G; Luz-Crawford P; Nguyen-Chi M; Mathieu M; Jorgensen C; Djouad F
    Nat Commun; 2021 Nov; 12(1):6336. PubMed ID: 34732706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration.
    Sousa S; Afonso N; Bensimon-Brito A; Fonseca M; Simões M; Leon J; Roehl H; Cancela ML; Jacinto A
    Development; 2011 Sep; 138(18):3897-905. PubMed ID: 21862555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shp2-Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration.
    Hale AJ; den Hertog J
    Mol Cell Biol; 2018 Feb; 38(4):. PubMed ID: 29203641
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple upstream modules regulate zebrafish myf5 expression.
    Chen YH; Wang YH; Chang MY; Lin CY; Weng CW; Westerfield M; Tsai HJ
    BMC Dev Biol; 2007 Jan; 7():1. PubMed ID: 17199897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.