BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31049496)

  • 1. Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS).
    Gardner B; Matousek P; Stone N
    Analyst; 2019 May; 144(11):3552-3555. PubMed ID: 31049496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsurface Chemically Specific Measurement of pH Levels in Biological Tissues Using Combined Surface-Enhanced and Deep Raman.
    Gardner B; Matousek P; Stone N
    Anal Chem; 2019 Sep; 91(17):10984-10987. PubMed ID: 31322859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive
    Nicolson F; Andreiuk B; Andreou C; Hsu HT; Rudder S; Kircher MF
    Theranostics; 2019; 9(20):5899-5913. PubMed ID: 31534527
    [No Abstract]   [Full Text] [Related]  

  • 4. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy.
    Gardner B; Stone N; Matousek P
    Faraday Discuss; 2016 Jun; 187():329-39. PubMed ID: 27049293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues.
    Asiala SM; Shand NC; Faulds K; Graham D
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25488-25494. PubMed ID: 28662336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy.
    Sharma B; Ma K; Glucksberg MR; Van Duyne RP
    J Am Chem Soc; 2013 Nov; 135(46):17290-3. PubMed ID: 24199792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy.
    Berry ME; McCabe SM; Sloan-Dennison S; Laing S; Shand NC; Graham D; Faulds K
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31613-31624. PubMed ID: 35801671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced spatially-offset Raman spectroscopy (SESORS) for detection of neurochemicals through the skull at physiologically relevant concentrations.
    Moody AS; Payne TD; Barth BA; Sharma B
    Analyst; 2020 Mar; 145(5):1885-1893. PubMed ID: 31971169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Raman tag-bridged core-shell Au@Cu
    He J; Dong J; Hu Y; Li G; Hu Y
    Nanoscale; 2019 Mar; 11(13):6089-6100. PubMed ID: 30869726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue.
    Stone N; Faulds K; Graham D; Matousek P
    Anal Chem; 2010 May; 82(10):3969-73. PubMed ID: 20397683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO
    Wei C; Xu MM; Fang CW; Jin Q; Yuan YX; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():262-268. PubMed ID: 28082212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids].
    Li SJ; Qiu LQ; Cao PG; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1575-8. PubMed ID: 15828331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy.
    Li S; Xu P; Ren Z; Zhang B; Du Y; Han X; Mack NH; Wang HL
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):49-54. PubMed ID: 23234505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Temperature Monitoring of Photoinduced Cargo Release inside Living Cells Using Hybrid Capsules Decorated with Gold Nanoparticles and Fluorescent Nanodiamonds.
    Gerasimova EN; Yaroshenko VV; Talianov PM; Peltek OO; Baranov MA; Kapitanova PV; Zuev DA; Timin AS; Zyuzin MV
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36737-36746. PubMed ID: 34313441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of inclusion depth in ex vivo animal tissues using surface enhanced deep Raman spectroscopy.
    Mosca S; Dey P; Tabish TA; Palombo F; Stone N; Matousek P
    J Biophotonics; 2020 Jan; 13(1):e201960092. PubMed ID: 31595708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live chicken egg embryos as an alternative
    McCabe SM; Gardiner H; Mullen C; Wallace GQ; Shand NC; Mullen AB; Horan L; Graham D; Faulds K; Boyd M
    Analyst; 2024 Jun; 149(13):3513-3517. PubMed ID: 38842276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.