These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31049510)

  • 1. Dual-band in situ molecular spectroscopy using single-sized Al-disk perfect absorbers.
    Dao TD; Chen K; Nagao T
    Nanoscale; 2019 May; 11(19):9508-9517. PubMed ID: 31049510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing.
    Zhang L; Lu W; Zhu L; Xu H; Wang H; Pan H; An Z
    Opt Express; 2023 Sep; 31(19):31024-31038. PubMed ID: 37710631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy.
    Chen K; Adato R; Altug H
    ACS Nano; 2012 Sep; 6(9):7998-8006. PubMed ID: 22920565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Chemical Sensing Platform Based on Dual-Resonant Infrared Plasmonic Perfect Absorber for On-Chip Detection of Poly(ethyl cyanoacrylate).
    Li D; Zhou H; Hui X; He X; Huang H; Zhang J; Mu X; Lee C; Yang Y
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101879. PubMed ID: 34423591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.
    Chen CK; Chang MH; Wu HT; Lee YC; Yen TJ
    Biosens Bioelectron; 2014 Oct; 60():343-50. PubMed ID: 24836017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing.
    Shi L; Shang J; Liu Z; Li Y; Fu G; Liu X; Pan P; Luo H; Liu G
    Nanotechnology; 2020 Nov; 31(46):465501. PubMed ID: 32764189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.
    Xu J; Ren Z; Dong B; Liu X; Wang C; Tian Y; Lee C
    ACS Nano; 2020 Sep; 14(9):12159-12172. PubMed ID: 32812748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching.
    Chen K; Duy Dao T; Nagao T
    Sci Rep; 2017 Mar; 7():44069. PubMed ID: 28272442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disc Antenna Enhanced Infrared Spectroscopy: From Self-Assembled Monolayers to Membrane Proteins.
    Pfitzner E; Seki H; Schlesinger R; Ataka K; Heberle J
    ACS Sens; 2018 May; 3(5):984-991. PubMed ID: 29741356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A super asymmetric cross antenna structure with tunable dual-frequency resonances.
    Xu H; Wang J
    Phys Chem Chem Phys; 2023 Nov; 25(42):29042-29049. PubMed ID: 37860894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
    Vogt J; Huck C; Neubrech F; Toma A; Gerbert D; Pucci A
    Phys Chem Chem Phys; 2015 Sep; 17(33):21169-75. PubMed ID: 25516198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-perfect (>99%) dual-band absorption in the visible using ultrathin semiconducting gratings.
    Gong T; Munday JN
    Opt Express; 2022 Sep; 30(20):36500-36508. PubMed ID: 36258577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps.
    Yoo D; Mohr DA; Vidal-Codina F; John-Herpin A; Jo M; Kim S; Matson J; Caldwell JD; Jeon H; Nguyen NC; Martin-Moreno L; Peraire J; Altug H; Oh SH
    Nano Lett; 2018 Mar; 18(3):1930-1936. PubMed ID: 29437401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption.
    Liu J; Zhu M; Zhang N; Zhang H; Zhou Y; Sun S; Yi N; Gao S; Song Q; Xiao S
    Nanoscale; 2015 Dec; 7(45):18914-7. PubMed ID: 26525777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region.
    Ishiyama T; Sokolov VV; Morita A
    J Chem Phys; 2011 Jan; 134(2):024510. PubMed ID: 21241123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.
    Frost RL; López A; Xi Y; Cardoso LH; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.