BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31049595)

  • 1. MethylCal: Bayesian calibration of methylation levels.
    Ochoa E; Zuber V; Fernandez-Jimenez N; Bilbao JR; Clark GR; Maher ER; Bottolo L
    Nucleic Acids Res; 2019 Aug; 47(14):e81. PubMed ID: 31049595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed analysis of the methylation patterns of the KvDMR1 imprinting control region of human chromosome 11.
    Beatty L; Weksberg R; Sadowski PD
    Genomics; 2006 Jan; 87(1):46-56. PubMed ID: 16321503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes.
    Sperandeo MP; Ungaro P; Vernucci M; Pedone PV; Cerrato F; Perone L; Casola S; Cubellis MV; Bruni CB; Andria G; Sebastio G; Riccio A
    Am J Hum Genet; 2000 Mar; 66(3):841-7. PubMed ID: 10712200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.
    Rossignol S; Steunou V; Chalas C; Kerjean A; Rigolet M; Viegas-Pequignot E; Jouannet P; Le Bouc Y; Gicquel C
    J Med Genet; 2006 Dec; 43(12):902-7. PubMed ID: 16825435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes.
    Russo S; Calzari L; Mussa A; Mainini E; Cassina M; Di Candia S; Clementi M; Guzzetti S; Tabano S; Miozzo M; Sirchia S; Finelli P; Prontera P; Maitz S; Sorge G; Calcagno A; Maghnie M; Divizia MT; Melis D; Manfredini E; Ferrero GB; Pecile V; Larizza L
    Clin Epigenetics; 2016; 8():23. PubMed ID: 26933465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids.
    Mitsuya K; Meguro M; Lee MP; Katoh M; Schulz TC; Kugoh H; Yoshida MA; Niikawa N; Feinberg AP; Oshimura M
    Hum Mol Genet; 1999 Jul; 8(7):1209-17. PubMed ID: 10369866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Quantitative Analysis of Methylated Alleles Real-Time PCR and Methylation-Specific MLPA for Molecular Diagnosis of Beckwith-Wiedemann Syndrome.
    Bergallo M; Galliano I; Montanari P; Calvi C; Daprà V; Carli D; Russo S; Mussa A; Ferrero GB
    Pathobiology; 2019; 86(4):217-224. PubMed ID: 31238307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No evidence for copy number and methylation variation in H19 and KCNQ10T1 imprinting control regions in children born small for gestational age.
    Murphy R; Thompson JM; Tost J; Mitchell EA;
    BMC Med Genet; 2014 Jun; 15():67. PubMed ID: 24934635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of CpG methylation is strongly correlated with loss of histone H3 lysine 9 methylation at DMR-LIT1 in patients with Beckwith-Wiedemann syndrome.
    Higashimoto K; Urano T; Sugiura K; Yatsuki H; Joh K; Zhao W; Iwakawa M; Ohashi H; Oshimura M; Niikawa N; Mukai T; Soejima H
    Am J Hum Genet; 2003 Oct; 73(4):948-56. PubMed ID: 12949703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith-Wiedemann syndrome with epimutations.
    Maeda T; Higashimoto K; Jozaki K; Yatsuki H; Nakabayashi K; Makita Y; Tonoki H; Okamoto N; Takada F; Ohashi H; Migita M; Kosaki R; Matsubara K; Ogata T; Matsuo M; Hamasaki Y; Ohtsuka Y; Nishioka K; Joh K; Mukai T; Hata K; Soejima H
    Genet Med; 2014 Dec; 16(12):903-12. PubMed ID: 24810686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric DNA methylation of CpG dyads is a feature of secondary DMRs associated with the
    Guntrum M; Vlasova E; Davis TL
    Epigenetics Chromatin; 2017; 10():31. PubMed ID: 28649282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of KCNQ1OT1 and H19 methylation levels in BWS and SRS patients using methylation-sensitive high-resolution melting analysis.
    Alders M; Bliek J; vd Lip K; vd Bogaard R; Mannens M
    Eur J Hum Genet; 2009 Apr; 17(4):467-73. PubMed ID: 18854861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome.
    Smilinich NJ; Day CD; Fitzpatrick GV; Caldwell GM; Lossie AC; Cooper PR; Smallwood AC; Joyce JA; Schofield PN; Reik W; Nicholls RD; Weksberg R; Driscoll DJ; Maher ER; Shows TB; Higgins MJ
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8064-9. PubMed ID: 10393948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome.
    Choufani S; Ko JM; Lou Y; Shuman C; Fishman L; Weksberg R
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33513760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts.
    Catoni M; Tsang JM; Greco AP; Zabet NR
    Nucleic Acids Res; 2018 Nov; 46(19):e114. PubMed ID: 29986099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic variation affecting DNA methylation and the human imprinting disorder, Beckwith-Wiedemann syndrome.
    Dagar V; Hutchison W; Muscat A; Krishnan A; Hoke D; Buckle A; Siswara P; Amor DJ; Mann J; Pinner J; Colley A; Wilson M; Sachdev R; McGillivray G; Edwards M; Kirk E; Collins F; Jones K; Taylor J; Hayes I; Thompson E; Barnett C; Haan E; Freckmann ML; Turner A; White S; Kamien B; Ma A; Mackenzie F; Baynam G; Kiraly-Borri C; Field M; Dudding-Byth T; Algar EM
    Clin Epigenetics; 2018 Aug; 10(1):114. PubMed ID: 30165906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of multilocus methylation-specific single nucleotide primer extension (MS-SNuPE) technology in diagnostic testing for human imprinted loci.
    Begemann M; Leisten I; Soellner L; Zerres K; Eggermann T; Spengler S
    Epigenetics; 2012 May; 7(5):473-81. PubMed ID: 22419125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome.
    Arima T; Kamikihara T; Hayashida T; Kato K; Inoue T; Shirayoshi Y; Oshimura M; Soejima H; Mukai T; Wake N
    Nucleic Acids Res; 2005; 33(8):2650-60. PubMed ID: 15888726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon?
    Sano S; Matsubara K; Nagasaki K; Kikuchi T; Nakabayashi K; Hata K; Fukami M; Kagami M; Ogata T
    J Hum Genet; 2016 Aug; 61(8):765-9. PubMed ID: 27121328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIRA-SNuPE, a quantitative, multiplex method for measuring allele-specific DNA methylation.
    Lee DH; Tran DA; Singh P; Oates N; Rivas GE; Larson GP; Pfeifer GP; Szabó PE
    Epigenetics; 2011 Feb; 6(2):212-23. PubMed ID: 20948294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.