BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31049617)

  • 1. Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    Anal Bioanal Chem; 2019 Jun; 411(16):3653-3663. PubMed ID: 31049617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    Sci Rep; 2019 Mar; 9(1):4807. PubMed ID: 30886183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute bacterial cell enumeration using flow cytometry.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    J Appl Microbiol; 2017 Aug; 123(2):464-477. PubMed ID: 28600831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of the Protocol for the LIVE/DEAD
    Robertson J; McGoverin C; Vanholsbeeck F; Swift S
    Front Microbiol; 2019; 10():801. PubMed ID: 31031741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability.
    Lehtinen J; Nuutila J; Lilius EM
    Cytometry A; 2004 Aug; 60(2):165-72. PubMed ID: 15290717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sperm viability assessment in marine invertebrates by fluorescent staining and spectrofluorimetry: A promising tool for assessing marine pollution impact.
    Gallo A; Boni R; Tosti E
    Ecotoxicol Environ Saf; 2018 Jan; 147():407-412. PubMed ID: 28888124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel fluorescence-based method for rapid quantification of live bacteria in river water and treated wastewater.
    Wang M; Ateia M; Hatano Y; Miyanaga K; Yoshimura C
    Env Sci Adv; 2022 Apr; 1(1):30-36. PubMed ID: 36778842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy.
    Krause M; Rösch P; Radt B; Popp J
    Anal Chem; 2008 Nov; 80(22):8568-75. PubMed ID: 18847286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide.
    Stiefel P; Schmidt-Emrich S; Maniura-Weber K; Ren Q
    BMC Microbiol; 2015 Feb; 15():36. PubMed ID: 25881030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of staining with SYTO 9/propidium iodide: interplay, kinetics and impact on
    Deng Y; Wang L; Chen Y; Long Y
    Biotechniques; 2020 Aug; 69(2):88-98. PubMed ID: 32393121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaerosol characterization by flow cytometry with fluorochrome.
    Chen PS; Li CS
    J Environ Monit; 2005 Oct; 7(10):950-9. PubMed ID: 16193165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.
    Duedu KO; French CE
    J Microbiol Methods; 2017 Apr; 135():85-92. PubMed ID: 28215962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid and low-cost estimation of bacteria counts in solution using fluorescence spectroscopy.
    Guo R; McGoverin C; Swift S; Vanholsbeeck F
    Anal Bioanal Chem; 2017 Jun; 409(16):3959-3967. PubMed ID: 28389919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of live:dead bacteria as a function of antibiotic treatment.
    Li R; Dhankhar D; Chen J; Cesario TC; Rentzepis PM
    J Microbiol Methods; 2018 Nov; 154():73-78. PubMed ID: 30332616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Detection of
    Robertson J; McGoverin C; White JR; Vanholsbeeck F; Swift S
    Microorganisms; 2021 Apr; 9(5):. PubMed ID: 33925816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New methodology for viability testing in environmental samples.
    Biggerstaff JP; Le Puil M; Weidow BL; Prater J; Glass K; Radosevich M; White DC
    Mol Cell Probes; 2006 Apr; 20(2):141-6. PubMed ID: 16481147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ detection of live-to-dead bacteria ratio after inactivation by means of synchronous fluorescence and PCA.
    Li R; Goswami U; King M; Chen J; Cesario TC; Rentzepis PM
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):668-673. PubMed ID: 29311322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of flow cytometry and PMA-qPCR to distinguish between membrane intact and membrane compromised bacteria cells in an aquatic milieu.
    Zacharias N; Kistemann T; Schreiber C
    Int J Hyg Environ Health; 2015 Nov; 218(8):714-22. PubMed ID: 25936763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and use of the commercially available viability stain, BacLight.
    Stocks SM
    Cytometry A; 2004 Oct; 61(2):189-95. PubMed ID: 15382024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation.
    Hua XW; Bao YW; Wang HY; Chen Z; Wu FG
    Nanoscale; 2017 Feb; 9(6):2150-2161. PubMed ID: 27874123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.