These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 31049621)
1. Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli. Miscevic D; Srirangan K; Kefale T; Abedi D; Moo-Young M; Chou CP Appl Microbiol Biotechnol; 2019 Jul; 103(13):5215-5230. PubMed ID: 31049621 [TBL] [Abstract][Full Text] [Related]
2. Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli. Rajpurohit H; Eiteman MA Appl Biochem Biotechnol; 2020 Sep; 192(1):243-256. PubMed ID: 32372381 [TBL] [Abstract][Full Text] [Related]
3. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
4. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source. Chen J; Li W; Zhang ZZ; Tan TW; Li ZJ Microb Cell Fact; 2018 Jul; 17(1):102. PubMed ID: 29970091 [TBL] [Abstract][Full Text] [Related]
6. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate. Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573 [TBL] [Abstract][Full Text] [Related]
7. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture. Chiang CJ; Lee HM; Guo HJ; Wang ZW; Lin LJ; Chao YP J Agric Food Chem; 2013 Aug; 61(31):7583-90. PubMed ID: 23848609 [TBL] [Abstract][Full Text] [Related]
8. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli. Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969 [TBL] [Abstract][Full Text] [Related]
9. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Sànchez Nogué V; Karhumaa K Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Escherichia coli for production of butyric acid. Saini M; Wang ZW; Chiang CJ; Chao YP J Agric Food Chem; 2014 May; 62(19):4342-8. PubMed ID: 24773075 [TBL] [Abstract][Full Text] [Related]
11. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Saha B; Cotta MA Bioengineered; 2012; 3(4):197-202. PubMed ID: 22705843 [TBL] [Abstract][Full Text] [Related]
12. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Liu R; Liang L; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P Bioresour Technol; 2013 Dec; 149():84-91. PubMed ID: 24096277 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions. Zhu F; Wang C; San KY; Bennett GN J Ind Microbiol Biotechnol; 2020 Feb; 47(2):223-232. PubMed ID: 31989325 [TBL] [Abstract][Full Text] [Related]
14. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Kim J; Tremaine M; Grass JA; Purdy HM; Landick R; Kiley PJ; Reed JL Biotechnol J; 2019 Sep; 14(9):e1800441. PubMed ID: 31297978 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. Wei N; Oh EJ; Million G; Cate JH; Jin YS ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748 [TBL] [Abstract][Full Text] [Related]
16. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Kawaguchi H; Katsuyama Y; Danyao D; Kahar P; Nakamura-Tsuruta S; Teramura H; Wakai K; Yoshihara K; Minami H; Ogino C; Ohnishi Y; Kondo A Appl Microbiol Biotechnol; 2017 Jul; 101(13):5279-5290. PubMed ID: 28396925 [TBL] [Abstract][Full Text] [Related]
17. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals. Liu H; Cheng T; Xian M; Cao Y; Fang F; Zou H Biotechnol Adv; 2014; 32(2):382-9. PubMed ID: 24361277 [TBL] [Abstract][Full Text] [Related]
18. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Baek JM; Mazumdar S; Lee SW; Jung MY; Lim JH; Seo SW; Jung GY; Oh MK Biotechnol Bioeng; 2013 Oct; 110(10):2790-4. PubMed ID: 23568786 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli. Gulevich AY; Skorokhodova AY; Sukhozhenko AV; Debabov VG J Biotechnol; 2017 Feb; 244():16-24. PubMed ID: 28131860 [TBL] [Abstract][Full Text] [Related]
20. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]