These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31049781)

  • 1. A micromechanical muscle model for determining the impact of motor unit fiber clustering on force transmission in aging skeletal muscle.
    Teklemariam A; Hodson-Tole E; Reeves ND; Cooper G
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1401-1413. PubMed ID: 31049781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of transmembrane proteins on force transmission in skeletal muscle.
    Zhang C; Gao Y
    J Biomech; 2014 Sep; 47(12):3232-6. PubMed ID: 25113807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the extracellular matrix in the reduction of lateral force transmission in muscle bundles: A finite element analysis.
    Spadoni S; Todros S; Reggiani C; Marcucci L; Pavan PG
    Comput Biol Med; 2024 Jun; 175():108488. PubMed ID: 38653066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104670. PubMed ID: 34274750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model.
    Yucesoy CA; Koopman BH; Huijing PA; Grootenboer HJ
    J Biomech; 2002 Sep; 35(9):1253-62. PubMed ID: 12163314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The need for speed - Does the force-velocity property significantly alter strain distributions within skeletal muscle?
    DiSalvo MD; Blemker SS
    J Biomech; 2024 Apr; 167():112089. PubMed ID: 38608614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.
    Zhang C; Gao Y
    J Biomech; 2012 Jul; 45(11):2001-6. PubMed ID: 22682257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A micromechanical model of skeletal muscle to explore the effects of fiber and fascicle geometry.
    Sharafi B; Blemker SS
    J Biomech; 2010 Dec; 43(16):3207-13. PubMed ID: 20846654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor units: remodeling in aged animals.
    Larsson L
    J Gerontol A Biol Sci Med Sci; 1995 Nov; 50 Spec No():91-5. PubMed ID: 7493226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanical modelling of skeletal muscles based on the finite element method.
    Böl M; Reese S
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural analysis of skeletal muscle force generation during aging.
    Zhang Y; Chen JS; He Q; He X; Basava RR; Hodgson J; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3295. PubMed ID: 31820588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling.
    Yucesoy CA; Koopman BH; Grootenboer HJ; Huijing PA
    Biomech Model Mechanobiol; 2008 Jun; 7(3):175-89. PubMed ID: 17486381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strains at the myotendinous junction predicted by a micromechanical model.
    Sharafi B; Ames EG; Holmes JW; Blemker SS
    J Biomech; 2011 Nov; 44(16):2795-801. PubMed ID: 21945569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging on regulation of muscle contraction at the motor unit, muscle cell, and molecular levels.
    Larsson L; Yu F; Höök P; Ramamurthy B; Marx JO; Pircher P
    Int J Sport Nutr Exerc Metab; 2001 Dec; 11 Suppl():S28-43. PubMed ID: 11915925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects.
    Yucesoy CA; Koopman BH; Grootenboer HJ; Huijing PA
    Biomech Model Mechanobiol; 2007 Jul; 6(4):227-43. PubMed ID: 16897102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.
    Marcucci L; Reggiani C; Natali AN; Pavan PG
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1833-1843. PubMed ID: 28584973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of damage in the hierarchical microstructure of skeletal muscles.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2022 Oct; 134():105386. PubMed ID: 35952441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element simulation scheme for biological muscular hydrostats.
    Liang Y; McMeeking RM; Evans AG
    J Theor Biol; 2006 Sep; 242(1):142-50. PubMed ID: 16580021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive force and viscoelastic properties of single fibers in human aging muscles.
    Lim JY; Choi SJ; Widrick JJ; Phillips EM; Frontera WR
    Eur J Appl Physiol; 2019 Oct; 119(10):2339-2348. PubMed ID: 31468173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.