These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31049802)

  • 1. Extending pretrained segmentation networks with additional anatomical structures.
    Ozdemir F; Goksel O
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1187-1195. PubMed ID: 31049802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitivity analysis of probability maps in deep-learning-based anatomical segmentation.
    Bice N; Kirby N; Li R; Nguyen D; Bahr T; Kabat C; Myers P; Papanikolaou N; Fakhreddine M
    J Appl Clin Med Phys; 2021 Aug; 22(8):105-119. PubMed ID: 34231950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation.
    Peng Y; Zheng H; Liang P; Zhang L; Zaman F; Wu X; Sonka M; Chen DZ
    Med Image Anal; 2022 Nov; 82():102574. PubMed ID: 36126403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Prompting based Incremental Learning for Semantic Segmentation of Multiplex Immuno-Flourescence Microscopy Imagery.
    Faulkenberry R; Prasad S; Maric D; Roysam B
    Res Sq; 2023 Dec; ():. PubMed ID: 38234728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contour Transformer Network for One-Shot Segmentation of Anatomical Structures.
    Lu Y; Zheng K; Li W; Wang Y; Harrison AP; Lin C; Wang S; Xiao J; Lu L; Kuo CF; Miao S
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2672-2684. PubMed ID: 33290215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An incremental learning approach to automatically recognize pulmonary diseases from the multi-vendor chest radiographs.
    Sirshar M; Hassan T; Akram MU; Khan SA
    Comput Biol Med; 2021 Jul; 134():104435. PubMed ID: 34010791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q
    Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Prompting Based Incremental Learning for Semantic Segmentation of Multiplex Immuno-Flourescence Microscopy Imagery.
    Faulkenberry R; Prasad S; Maric D; Roysam B
    Neuroinformatics; 2024 Apr; 22(2):147-162. PubMed ID: 38396218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Current Deep Learning Networks for Semantic Segmentation of Anatomical Structures in Laparoscopic Surgery.
    Silva B; Oliveira B; Morais P; Buschle LR; Correia-Pinto J; Lima E; Vilaca JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3502-3505. PubMed ID: 36085761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.
    Li X; Dou Q; Chen H; Fu CW; Qi X; Belavý DL; Armbrecht G; Felsenberg D; Zheng G; Heng PA
    Med Image Anal; 2018 Apr; 45():41-54. PubMed ID: 29414435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Squeeze & excite' guided few-shot segmentation of volumetric images.
    Guha Roy A; Siddiqui S; Pölsterl S; Navab N; Wachinger C
    Med Image Anal; 2020 Jan; 59():101587. PubMed ID: 31630012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Class Incremental Learning of Anatomical Structures in Fetal Echocardiography Videos.
    Patra A; Noble JA
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):1046-1058. PubMed ID: 32071014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building medical image classifiers with very limited data using segmentation networks.
    Wong KCL; Syeda-Mahmood T; Moradi M
    Med Image Anal; 2018 Oct; 49():105-116. PubMed ID: 30119038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation.
    Yan Z; Yang X; Cheng KT
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1912-1923. PubMed ID: 29993396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One model to use them all: training a segmentation model with complementary datasets.
    Jenke AC; Bodenstedt S; Kolbinger FR; Distler M; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1233-1241. PubMed ID: 38678102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.