These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31049802)
21. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345 [TBL] [Abstract][Full Text] [Related]
22. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
23. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Fashandi H; Kuling G; Lu Y; Wu H; Martel AL Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062 [TBL] [Abstract][Full Text] [Related]
24. Semi-supervised deep learning of brain tissue segmentation. Ito R; Nakae K; Hata J; Okano H; Ishii S Neural Netw; 2019 Aug; 116():25-34. PubMed ID: 30986724 [TBL] [Abstract][Full Text] [Related]
25. Neural multi-atlas label fusion: Application to cardiac MR images. Yang H; Sun J; Li H; Wang L; Xu Z Med Image Anal; 2018 Oct; 49():60-75. PubMed ID: 30099151 [TBL] [Abstract][Full Text] [Related]
26. Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation. You C; Xiang J; Su K; Zhang X; Dong S; Onofrey J; Staib L; Duncan JS Distrib Collab Fed Learn Afford AI Healthc Resour Div Glob Health (2022); 2022 Sep; 13573():3-16. PubMed ID: 37415747 [TBL] [Abstract][Full Text] [Related]
27. Generalizable multi-task, multi-domain deep segmentation of sparse pediatric imaging datasets via multi-scale contrastive regularization and multi-joint anatomical priors. Boutillon A; Conze PH; Pons C; Burdin V; Borotikar B Med Image Anal; 2022 Oct; 81():102556. PubMed ID: 36007466 [TBL] [Abstract][Full Text] [Related]
28. Multi-organ segmentation of the head and neck area: an efficient hierarchical neural networks approach. Tappeiner E; Pröll S; Hönig M; Raudaschl PF; Zaffino P; Spadea MF; Sharp GC; Schubert R; Fritscher K Int J Comput Assist Radiol Surg; 2019 May; 14(5):745-754. PubMed ID: 30847761 [TBL] [Abstract][Full Text] [Related]
29. Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Kushibar K; Valverde S; González-Villà S; Bernal J; Cabezas M; Oliver A; Lladó X Med Image Anal; 2018 Aug; 48():177-186. PubMed ID: 29935442 [TBL] [Abstract][Full Text] [Related]
30. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
31. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
32. An application of cascaded 3D fully convolutional networks for medical image segmentation. Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583 [TBL] [Abstract][Full Text] [Related]
33. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
34. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. Yu L; Chen H; Dou Q; Qin J; Heng PA IEEE Trans Med Imaging; 2017 Apr; 36(4):994-1004. PubMed ID: 28026754 [TBL] [Abstract][Full Text] [Related]
35. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462 [TBL] [Abstract][Full Text] [Related]
36. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Prasoon A; Petersen K; Igel C; Lauze F; Dam E; Nielsen M Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):246-53. PubMed ID: 24579147 [TBL] [Abstract][Full Text] [Related]
37. SegAN: Adversarial Network with Multi-scale L Xue Y; Xu T; Zhang H; Long LR; Huang X Neuroinformatics; 2018 Oct; 16(3-4):383-392. PubMed ID: 29725916 [TBL] [Abstract][Full Text] [Related]
38. QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy. Guha Roy A; Conjeti S; Navab N; Wachinger C; Neuroimage; 2019 Feb; 186():713-727. PubMed ID: 30502445 [TBL] [Abstract][Full Text] [Related]
39. A survey on few-shot class-incremental learning. Tian S; Li L; Li W; Ran H; Ning X; Tiwari P Neural Netw; 2024 Jan; 169():307-324. PubMed ID: 37922714 [TBL] [Abstract][Full Text] [Related]
40. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing. Ghesu FC; Krubasik E; Georgescu B; Singh V; Yefeng Zheng ; Hornegger J; Comaniciu D IEEE Trans Med Imaging; 2016 May; 35(5):1217-1228. PubMed ID: 27046846 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]