These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31050106)

  • 1. Exploring the impact of analysis software on task fMRI results.
    Bowring A; Maumet C; Nichols TE
    Hum Brain Mapp; 2019 Aug; 40(11):3362-3384. PubMed ID: 31050106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolating the sources of pipeline-variability in group-level task-fMRI results.
    Bowring A; Nichols TE; Maumet C
    Hum Brain Mapp; 2022 Feb; 43(3):1112-1128. PubMed ID: 34773436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RUMBA software: tools for neuroimaging data analysis.
    Bly BM; Rebbechi D; Hanson SJ; Grasso G
    Neuroinformatics; 2004; 2(1):71-100. PubMed ID: 15067169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate autocorrelation modeling substantially improves fMRI reliability.
    Olszowy W; Aston J; Rua C; Williams GB
    Nat Commun; 2019 Dec; 10(1):1220. PubMed ID: 30899012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MACS - a new SPM toolbox for model assessment, comparison and selection.
    Soch J; Allefeld C
    J Neurosci Methods; 2018 Aug; 306():19-31. PubMed ID: 29842901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroinformatics; 2008; 6(2):123-34. PubMed ID: 18506642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of using different software packages for BOLD analysis in planning a neurosurgical treatment in patients with brain tumours.
    Kozub J; Paciorek A; Urbanik A; Ostrogórska M
    Clin Imaging; 2020 Dec; 68():148-157. PubMed ID: 32622193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of patient motion in disorders of consciousness and optimization of its retrospective correction.
    Hoffmann M; Carpenter TA; Williams GB; Sawiak SJ
    Magn Reson Imaging; 2015 Apr; 33(3):346-50. PubMed ID: 25485789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.
    Yan CG; Wang XD; Zuo XN; Zang YF
    Neuroinformatics; 2016 Jul; 14(3):339-51. PubMed ID: 27075850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines.
    Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM
    Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis.
    Kumar M; Ellis CT; Lu Q; Zhang H; Capotă M; Willke TL; Ramadge PJ; Turk-Browne NB; Norman KA
    PLoS Comput Biol; 2020 Jan; 16(1):e1007549. PubMed ID: 31940340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
    Eklund A; Nichols TE; Knutsson H
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7900-5. PubMed ID: 27357684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroimage; 2008 Jul; 41(4):1242-52. PubMed ID: 18482849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protocol for ultra-high field laminar fMRI in the human brain.
    Jia K; Zamboni E; Rua C; Goncalves NR; Kemper V; Ng AKT; Rodgers CT; Williams G; Goebel R; Kourtzi Z
    STAR Protoc; 2021 Jun; 2(2):100415. PubMed ID: 33851140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model specification and the reliability of fMRI results: implications for longitudinal neuroimaging studies in psychiatry.
    Fournier JC; Chase HW; Almeida J; Phillips ML
    PLoS One; 2014; 9(8):e105169. PubMed ID: 25166022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of image analysis software on neurofunctional activation during processing of emotional human faces.
    Fusar-Poli P; Bhattacharyya S; Allen P; Crippa JA; Borgwardt S; Martin-Santos R; Seal M; O'Carroll C; Atakan Z; Zuardi AW; McGuire P
    J Clin Neurosci; 2010 Mar; 17(3):311-4. PubMed ID: 20079652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.
    Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC
    Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.