BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31050157)

  • 1. Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity.
    Karwi QG; Zhang L; Altamimi TR; Wagg CS; Patel V; Uddin GM; Joerg AR; Padwal RS; Johnstone DE; Sharma A; Oudit GY; Lopaschuk GD
    Diabetes Obes Metab; 2019 Aug; 21(8):1944-1955. PubMed ID: 31050157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox.
    Sankaralingam S; Abo Alrob O; Zhang L; Jaswal JS; Wagg CS; Fukushima A; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Diabetes; 2015 May; 64(5):1643-57. PubMed ID: 25524917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy.
    Tan Y; Li M; Wu G; Lou J; Feng M; Xu J; Zhou J; Zhang P; Yang H; Dong L; Li J; Zhang X; Gao F
    Life Sci; 2021 May; 272():119242. PubMed ID: 33607155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking.
    Goldenberg JR; Carley AN; Ji R; Zhang X; Fasano M; Schulze PC; Lewandowski ED
    Circulation; 2019 Jun; 139(24):2765-2777. PubMed ID: 30909726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice.
    Sun Q; Wagg CS; Güven B; Wei K; de Oliveira AA; Silver H; Zhang L; Vergara A; Chen B; Wong N; Wang F; Dyck JRB; Oudit GY; Lopaschuk GD
    Basic Res Cardiol; 2024 Feb; 119(1):133-150. PubMed ID: 38148348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects.
    Turdi S; Ge W; Hu N; Bradley KM; Wang X; Ren J
    J Mol Cell Cardiol; 2013 Feb; 55():117-29. PubMed ID: 23266593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure.
    Uddin GM; Zhang L; Shah S; Fukushima A; Wagg CS; Gopal K; Al Batran R; Pherwani S; Ho KL; Boisvenue J; Karwi QG; Altamimi T; Wishart DS; Dyck JRB; Ussher JR; Oudit GY; Lopaschuk GD
    Cardiovasc Diabetol; 2019 Jul; 18(1):86. PubMed ID: 31277657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure.
    Kaimoto S; Hoshino A; Ariyoshi M; Okawa Y; Tateishi S; Ono K; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H305-H313. PubMed ID: 28011586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.
    Dhahri W; Drolet MC; Roussel E; Couet J; Arsenault M
    BMC Cardiovasc Disord; 2014 Sep; 14():123. PubMed ID: 25249193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weight loss in adult male Wistar rats by Roux-en-Y gastric bypass is primarily explained by caloric intake reduction and presurgery body weight.
    Hoornenborg CW; Somogyi E; Bruggink JE; Boyle CN; Lutz TA; Emous M; van Beek AP; Nyakas C; van Dijk G
    Am J Physiol Regul Integr Comp Physiol; 2024 Jun; 326(6):R507-R514. PubMed ID: 38586888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling heart failure risk in diabetes and kidney disease: limitations and potential applications of transverse aortic constriction in high-fat-fed mice.
    Tan WS; Mullins TP; Flint M; Walton SL; Bielefeldt-Ohmann H; Carter DA; Gandhi MR; McDonald HR; Li J; Moritz KM; Reichelt ME; Gallo LA
    Am J Physiol Regul Integr Comp Physiol; 2018 Jun; 314(6):R858-R869. PubMed ID: 29443547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.
    Abdurrachim D; Nabben M; Hoerr V; Kuhlmann MT; Bovenkamp P; Ciapaite J; Geraets IME; Coumans W; Luiken JJFP; Glatz JFC; Schäfers M; Nicolay K; Faber C; Hermann S; Prompers JJ
    Cardiovasc Res; 2017 Aug; 113(10):1148-1160. PubMed ID: 28549111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure.
    Qanud K; Mamdani M; Pepe M; Khairallah RJ; Gravel J; Lei B; Gupte SA; Sharov VG; Sabbah HN; Stanley WC; Recchia FA
    Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H2098-105. PubMed ID: 18820029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.