BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31050389)

  • 1. 3D and Porous RGDC-Functionalized Polyester-Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells.
    Yassin MA; Fuoco T; Mohamed-Ahmed S; Mustafa K; Finne-Wistrand A
    Macromol Biosci; 2019 Jun; 19(6):e1900049. PubMed ID: 31050389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds.
    Costa-Pinto AR; Salgado AJ; Correlo VM; Sol P; Bhattacharya M; Charbord P; Reis RL; Neves NM
    Tissue Eng Part A; 2008 Jun; 14(6):1049-57. PubMed ID: 19230127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells.
    Bilem I; Chevallier P; Plawinski L; Sone ED; Durrieu MC; Laroche G
    Acta Biomater; 2016 May; 36():132-42. PubMed ID: 27000551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGD-functionalized polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation.
    Tahlawi A; Klontzas ME; Allenby MC; Morais JCF; Panoskaltsis N; Mantalaris A
    J Tissue Eng Regen Med; 2019 Feb; 13(2):232-243. PubMed ID: 30537385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.
    Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE
    Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds.
    Rentsch C; Hess R; Rentsch B; Hofmann A; Manthey S; Scharnweber D; Biewener A; Zwipp H
    In Vitro Cell Dev Biol Anim; 2010 Jul; 46(7):624-34. PubMed ID: 20490706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface activation with oxygen plasma promotes osteogenesis with enhanced extracellular matrix formation in three-dimensional microporous scaffolds.
    Yamada S; Yassin MA; Weigel T; Schmitz T; Hansmann J; Mustafa K
    J Biomed Mater Res A; 2021 Sep; 109(9):1560-1574. PubMed ID: 33675166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds.
    Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M
    Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation.
    Hruschka V; Saeed A; Slezak P; Cheikh Al Ghanami R; Feichtinger GA; Alexander C; Redl H; Shakesheff K; Wolbank S
    Tissue Eng Part A; 2015 Jan; 21(1-2):310-9. PubMed ID: 25167885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditioned media enhance osteogenic differentiation on poly(L-lactide-co-epsilon-caprolactone)/hydroxyapatite scaffolds and chondrogenic differentiation in alginate.
    Maxson S; Burg KJ
    J Biomater Sci Polym Ed; 2010; 21(11):1441-58. PubMed ID: 20534195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen microgel-assisted dexamethasone release from PLLA-collagen hybrid scaffolds of controlled pore structure for osteogenic differentiation of mesenchymal stem cells.
    Nanda HS; Nakamoto T; Chen S; Cai R; Kawazoe N; Chen G
    J Biomater Sci Polym Ed; 2014; 25(13):1374-86. PubMed ID: 25046640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering.
    Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation.
    Palumbo FS; Bongiovì F; Carfì Pavia F; Vitrano I; La Carrubba V; Pitarresi G; Brucato V; Giammona G
    J Biomed Mater Res A; 2019 Dec; 107(12):2726-2735. PubMed ID: 31404485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.