These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31050539)

  • 1. Thermal Conductivity Enhancement in MoS_{2} under Extreme Strain.
    Meng X; Pandey T; Jeong J; Fu S; Yang J; Chen K; Singh A; He F; Xu X; Zhou J; Hsieh WP; Singh AK; Lin JF; Wang Y
    Phys Rev Lett; 2019 Apr; 122(15):155901. PubMed ID: 31050539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Transport in Quasi-1D van der Waals Crystal Ta
    Zhang Q; Liu C; Liu X; Liu J; Cui Z; Zhang Y; Yang L; Zhao Y; Xu TT; Chen Y; Wei J; Mao Z; Li D
    ACS Nano; 2018 Mar; 12(3):2634-2642. PubMed ID: 29474086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Record-Low and Anisotropic Thermal Conductivity of a Quasi-One-Dimensional Bulk ZrTe
    Zhu J; Feng T; Mills S; Wang P; Wu X; Zhang L; Pantelides ST; Du X; Wang X
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40740-40747. PubMed ID: 30387354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and Thickness Dependence of the Thermal Conductivity in 2D Ferromagnet Fe
    Claro MS; Corral-Sertal J; Fumega AO; Blanco-Canosa S; Suárez-Rodríguez M; Hueso LE; Pardo V; Rivadulla F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49538-49544. PubMed ID: 37846079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles study on the anisotropic transport of electrons and phonons in monolayer and bulk GaTe: a comparative study.
    Zhang KC; Li YF; Liu Y; Zhu Y
    Phys Chem Chem Phys; 2020 Jul; 22(27):15270-15280. PubMed ID: 32613997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon thermal conduction in a graphene-C
    Han D; Wang X; Ding W; Chen Y; Zhang J; Xin G; Cheng L
    Nanotechnology; 2019 Feb; 30(7):075403. PubMed ID: 30524108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon thermal transport in a graphene/MoSe
    Hong Y; Ju MG; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2637-2645. PubMed ID: 29319076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallization and Superconductivity in the van der Waals Compound CuP
    Li W; Feng J; Zhang X; Li C; Dong H; Deng W; Liu J; Tian H; Chen J; Jiang S; Sheng H; Chen B; Zhang H
    J Am Chem Soc; 2021 Dec; 143(48):20343-20355. PubMed ID: 34813695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z; Jiang JW; Pei QX; Zhang YW
    Nanotechnology; 2015 Feb; 26(6):065703. PubMed ID: 25597653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide.
    Jang H; Ryder CR; Wood JD; Hersam MC; Cahill DG
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28722239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size dependent reduction rate.
    Zhu L; Zhang T; Sun Z; Li J; Chen G; Yang SA
    Nanotechnology; 2015 Nov; 26(46):465707. PubMed ID: 26511672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent control of thermal phonon transport in van der Waals superlattices.
    Guo R; Jho YD; Minnich AJ
    Nanoscale; 2018 Aug; 10(30):14432-14440. PubMed ID: 29808882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation.
    Hu Y; Yin Y; Li S; Zhou H; Li D; Zhang G
    Nano Lett; 2020 Oct; 20(10):7619-7626. PubMed ID: 32852213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions.
    Zhang K; Hu S; Zhang Y; Zhang T; Zhou X; Sun Y; Li TX; Fan HJ; Shen G; Chen X; Dai N
    ACS Nano; 2015 Mar; 9(3):2704-10. PubMed ID: 25716291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal.
    Wang X; Kaviany M; Huang B
    Nanoscale; 2017 Nov; 9(45):18022-18031. PubMed ID: 29131229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface thermal conductivities induced by van der Waals interactions.
    Dong HM; Liang HP; Tao ZH; Duan YF; Milošević MV; Chang K
    Phys Chem Chem Phys; 2024 Jan; 26(5):4047-4051. PubMed ID: 38224156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.