BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31050593)

  • 1. Study on the wall-breaking method of carotenoids producing yeast
    Liu C; Cheng Y; Du C; Lv T; Guo Y; Han M; Pi F; Zhang W; Qian H
    Prep Biochem Biotechnol; 2019; 49(8):767-774. PubMed ID: 31050593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased torulene production by the red yeast,
    Wei C; Wu T; Ao H; Qian X; Wang Z; Sun J
    Prep Biochem Biotechnol; 2020; 50(1):66-73. PubMed ID: 31502910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoids production in different culture conditions by Sporidiobolus pararoseus.
    Han M; He Q; Zhang WG
    Prep Biochem Biotechnol; 2012; 42(4):293-303. PubMed ID: 22708808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus.
    Han M; Xu ZY; Du C; Qian H; Zhang WG
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1425-33. PubMed ID: 27145779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway.
    Li C; Li B; Zhang N; Wei N; Wang Q; Wang W; Xie Y; Zou H
    J Gen Appl Microbiol; 2019 Jul; 65(3):111-120. PubMed ID: 30487371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus.
    Buzzini P; Innocenti M; Turchetti B; Libkind D; van Broock M; Mulinacci N
    Can J Microbiol; 2007 Aug; 53(8):1024-31. PubMed ID: 17898860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions.
    Li C; Zhang N; Li B; Xu Q; Song J; Wei N; Wang W; Zou H
    Food Chem; 2017 Dec; 237():1041-1047. PubMed ID: 28763948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation.
    Zhao S; Guo T; Yao Y; Dong B; Zhao G
    Int J Food Microbiol; 2024 Jun; 417():110690. PubMed ID: 38581832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the Molecular Mechanism of Torularhodin against Hepatic Oxidative Damage by Transcriptome Analysis.
    Li J; Guo Y; Cheng Y; Pi F; Yao W; Xie Y; Qian H
    Oxid Med Cell Longev; 2019; 2019():7417263. PubMed ID: 31396306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast carotenoids: production and activity as antimicrobial biomolecule.
    Vargas-Sinisterra AF; Ramírez-Castrillón M
    Arch Microbiol; 2021 Apr; 203(3):873-888. PubMed ID: 33151382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor.
    Manowattana A; Techapun C; Watanabe M; Chaiyaso T
    J Biosci Bioeng; 2018 Jan; 125(1):59-66. PubMed ID: 28827048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tentative identification of torulene cis/trans geometrical isomers isolated from Sporidiobolus pararoseus by high-performance liquid chromatography-diode array detection-mass spectrometry and preparation by column chromatography.
    Shi Q; Wang H; DU C; Zhang W; Qian H
    Anal Sci; 2013; 29(10):997-1002. PubMed ID: 24107566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass.
    Breierová E; Gregor T; Marová I; Certík M; Kogan G
    Chem Biodivers; 2008 Mar; 5(3):440-6. PubMed ID: 18357552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507.
    Chaiyaso T; Manowattana A
    Prep Biochem Biotechnol; 2018 Jan; 48(1):13-23. PubMed ID: 29035150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Cellular Anti-Inflammatory Effect of Torularhodin Produced by
    Liu C; Han M; Lv F; Gao Y; Wang X; Zhang X; Guo Y; Cheng Y; Qian H
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four- and five-step dehydrogenation of phytoene.
    Li C; Zhang N; Song J; Wei N; Li B; Zou H; Han X
    Gene; 2016 Sep; 590(1):169-76. PubMed ID: 27346167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analysis revealed the improved β-carotene production in Sporidiobolus pararoseus yellow mutant MuY9.
    Li C; Li B; Zhang N; Wang Q; Wang W; Zou H
    J Gen Appl Microbiol; 2019 Jul; 65(3):121-128. PubMed ID: 30542003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi).
    Herz S; Weber RW; Anke H; Mucci A; Davoli P
    Phytochemistry; 2007 Oct; 68(20):2503-11. PubMed ID: 17597170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev).
    Sperstad S; Lutnaes BF; Stormo SK; Liaaen-Jensen S; Landfald B
    J Ind Microbiol Biotechnol; 2006 Apr; 33(4):269-73. PubMed ID: 16341835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains.
    Kot AM; Sęk W; Kieliszek M; Błażejak S; Pobiega K; Brzezińska R
    Appl Biochem Biotechnol; 2024 Jun; 196(6):3274-3316. PubMed ID: 37646889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.