These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 31050846)
21. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. Xie GY; Olson DH; Blaustein AR PLoS One; 2016; 11(8):e0160746. PubMed ID: 27513565 [TBL] [Abstract][Full Text] [Related]
23. Predicting daily activity time through ecological niche modelling and microclimatic data. Toro-Cardona FA; Parra JL; Rojas-Soto OR J Anim Ecol; 2023 Apr; 92(4):925-935. PubMed ID: 36744653 [TBL] [Abstract][Full Text] [Related]
24. Climate change will cause climatic niche contraction of Vaccinium myrtillus L. and V. vitis-idaea L. in Europe. Puchałka R; Paź-Dyderska S; Woziwoda B; Dyderski MK Sci Total Environ; 2023 Sep; 892():164483. PubMed ID: 37268126 [TBL] [Abstract][Full Text] [Related]
25. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Briscoe NJ; Kearney MR; Taylor CA; Wintle BA Glob Chang Biol; 2016 Jul; 22(7):2425-39. PubMed ID: 26960136 [TBL] [Abstract][Full Text] [Related]
26. Tracking of climatic niche boundaries under recent climate change. La Sorte FA; Jetz W J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840 [TBL] [Abstract][Full Text] [Related]
27. Phenology predicts the native and invasive range limits of common ragweed. Chapman DS; Haynes T; Beal S; Essl F; Bullock JM Glob Chang Biol; 2014 Jan; 20(1):192-202. PubMed ID: 24038855 [TBL] [Abstract][Full Text] [Related]
28. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Kearney M; Porter W Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794 [TBL] [Abstract][Full Text] [Related]
29. Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus). Fitzpatrick MJ; Porter WP; Pauli JN; Kearney MR; Notaro M; Zuckerberg B Glob Chang Biol; 2020 Nov; 26(11):6350-6362. PubMed ID: 32871618 [TBL] [Abstract][Full Text] [Related]
30. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
31. Correlative climatic niche models predict real and virtual species distributions equally well. Journé V; Barnagaud JY; Bernard C; Crochet PA; Morin X Ecology; 2020 Jan; 101(1):e02912. PubMed ID: 31605622 [TBL] [Abstract][Full Text] [Related]
32. Temperature tracking by North Sea benthic invertebrates in response to climate change. Hiddink JG; Burrows MT; García Molinos J Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407 [TBL] [Abstract][Full Text] [Related]
33. Projected impacts of climate change on the range and phenology of three culturally-important shrub species. Prevéy JS; Parker LE; Harrington CA PLoS One; 2020; 15(5):e0232537. PubMed ID: 32384124 [TBL] [Abstract][Full Text] [Related]
34. Choosing among correlative, mechanistic, and hybrid models of species' niche and distribution. Tourinho L; Vale MM Integr Zool; 2023 Jan; 18(1):93-109. PubMed ID: 34932894 [TBL] [Abstract][Full Text] [Related]
35. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Valladares F; Matesanz S; Guilhaumon F; Araújo MB; Balaguer L; Benito-Garzón M; Cornwell W; Gianoli E; van Kleunen M; Naya DE; Nicotra AB; Poorter H; Zavala MA Ecol Lett; 2014 Nov; 17(11):1351-64. PubMed ID: 25205436 [TBL] [Abstract][Full Text] [Related]
36. Climate change models predict southerly shift of the cat flea (Ctenocephalides felis) distribution in Australia. Crkvencic N; Šlapeta J Parasit Vectors; 2019 Mar; 12(1):137. PubMed ID: 30902110 [TBL] [Abstract][Full Text] [Related]
37. A framework for using niche models to estimate impacts of climate change on species distributions. Anderson RP Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379 [TBL] [Abstract][Full Text] [Related]
39. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Morin X; Thuiller W Ecology; 2009 May; 90(5):1301-13. PubMed ID: 19537550 [TBL] [Abstract][Full Text] [Related]
40. Integrating functional traits into correlative species distribution models to investigate the vulnerability of marine human activities to climate change. Bosch-Belmar M; Giommi C; Milisenda G; Abbruzzo A; Sarà G Sci Total Environ; 2021 Dec; 799():149351. PubMed ID: 34371417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]