These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 31050846)
41. An ecophysiological perspective on likely giant panda habitat responses to climate change. Zhang Y; Mathewson PD; Zhang Q; Porter WP; Ran J Glob Chang Biol; 2018 Apr; 24(4):1804-1816. PubMed ID: 29251797 [TBL] [Abstract][Full Text] [Related]
42. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake. Sahlean TC; Gherghel I; Papeş M; Strugariu A; Zamfirescu ŞR PLoS One; 2014; 9(3):e91994. PubMed ID: 24670422 [TBL] [Abstract][Full Text] [Related]
43. Avian distributions under climate change: towards improved projections. La Sorte FA; Jetz W J Exp Biol; 2010 Mar; 213(6):862-9. PubMed ID: 20190111 [TBL] [Abstract][Full Text] [Related]
44. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Fischer D; Thomas SM; Neteler M; Tjaden NB; Beierkuhnlein C Euro Surveill; 2014 Feb; 19(6):. PubMed ID: 24556349 [TBL] [Abstract][Full Text] [Related]
45. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming. Ren Z; Zagortchev L; Ma J; Yan M; Li J BMC Ecol; 2020 May; 20(1):28. PubMed ID: 32386506 [TBL] [Abstract][Full Text] [Related]
46. Scaling between macro- to microscale climatic data reveals strong phylogenetic inertia in niche evolution in plethodontid salamanders. Farallo VR; Muñoz MM; Uyeda JC; Miles DB Evolution; 2020 May; 74(5):979-991. PubMed ID: 32190909 [TBL] [Abstract][Full Text] [Related]
47. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: impact of climate change. Chalghaf B; Chemkhi J; Mayala B; Harrabi M; Benie GB; Michael E; Ben Salah A Parasit Vectors; 2018 Aug; 11(1):461. PubMed ID: 30092826 [TBL] [Abstract][Full Text] [Related]
48. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb. - is this herb a global threat? Rewicz A; Myśliwy M; Rewicz T; Adamowski W; Kolanowska M Sci Total Environ; 2022 Dec; 850():157959. PubMed ID: 35964758 [TBL] [Abstract][Full Text] [Related]
49. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Coristine LE; Kerr JT Ecol Evol; 2015 Nov; 5(22):5162-5176. PubMed ID: 30151121 [TBL] [Abstract][Full Text] [Related]
50. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. Lavender E; Fox CJ; Burrows MT PLoS One; 2021; 16(10):e0258184. PubMed ID: 34606498 [TBL] [Abstract][Full Text] [Related]
51. CLIMBER: Climatic niche characteristics of the butterflies in Europe. Schweiger O; Harpke A; Wiemers M; Settele J Zookeys; 2014; (367):65-84. PubMed ID: 24478578 [TBL] [Abstract][Full Text] [Related]
52. Process-based modeling of species' distributions: what limits temperate tree species' range boundaries? Morin X; Augspurger C; Chuine I Ecology; 2007 Sep; 88(9):2280-91. PubMed ID: 17918406 [TBL] [Abstract][Full Text] [Related]
53. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios. Romero-Alvarez D; Escobar LE; Varela S; Larkin DJ; Phelps NBD PLoS One; 2017; 12(7):e0180930. PubMed ID: 28704433 [TBL] [Abstract][Full Text] [Related]
54. Distribution of euptyctimous mite Phthiracarus longulus (Acari: Oribatida) under future climate change in the Palearctic. Marquardt T; Kaczmarek S; Niedbała W Sci Rep; 2024 Sep; 14(1):21913. PubMed ID: 39300195 [TBL] [Abstract][Full Text] [Related]
55. The idiosyncrasies of place: geographic variation in the climate-distribution relationships of the American pika. Jeffress MR; Rodhouse TJ; Ray C; Wolff S; Epps CW Ecol Appl; 2013 Jun; 23(4):864-78. PubMed ID: 23865236 [TBL] [Abstract][Full Text] [Related]
56. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. Oldfather MF; Kling MM; Sheth SN; Emery NC; Ackerly DD Glob Chang Biol; 2020 Mar; 26(3):1055-1067. PubMed ID: 31674701 [TBL] [Abstract][Full Text] [Related]
57. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation. Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422 [TBL] [Abstract][Full Text] [Related]
58. Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios. Adão F; Campos JC; Santos JA; Malheiro AC; Fraga H Front Plant Sci; 2023; 14():974020. PubMed ID: 36844079 [TBL] [Abstract][Full Text] [Related]
59. Aedes albopictus and Aedes japonicus - two invasive mosquito species with different temperature niches in Europe. Cunze S; Koch LK; Kochmann J; Klimpel S Parasit Vectors; 2016 Nov; 9(1):573. PubMed ID: 27814747 [TBL] [Abstract][Full Text] [Related]
60. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish. Brown LR; Komoroske LM; Wagner RW; Morgan-King T; May JT; Connon RE; Fangue NA PLoS One; 2016; 11(1):e0146724. PubMed ID: 26796147 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]