These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

795 related articles for article (PubMed ID: 31050911)

  • 21. Poly(ADP-ribosyl)ation polymerases: mechanism and new target of anticancer therapy.
    Heitz F; Harter P; Ewald-Riegler N; Papsdorf M; Kommoss S; du Bois A
    Expert Rev Anticancer Ther; 2010 Jul; 10(7):1125-36. PubMed ID: 20645701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition.
    Mirza-Aghazadeh-Attari M; Recio MJ; Darband SG; Kaviani M; Safa A; Mihanfar A; Sadighparvar S; Karimian A; Alemi F; Majidinia M; Yousefi B
    DNA Repair (Amst); 2021 Feb; 98():103032. PubMed ID: 33494010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.
    Haynes B; Murai J; Lee JM
    Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting DNA Damage Response in Prostate and Breast Cancer.
    Wengner AM; Scholz A; Haendler B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations.
    Ngoi NYL; Westin SN; Yap TA
    Curr Opin Oncol; 2022 Sep; 34(5):559-569. PubMed ID: 35787597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Veliparib: a new therapeutic option in ovarian cancer?
    Ghisoni E; Giannone G; Tuninetti V; Genta S; Scotto G; Aglietta M; Sangiolo D; Mittica G; Valabrega G
    Future Oncol; 2019 Jun; 15(17):1975-1987. PubMed ID: 31074636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines.
    Peasland A; Wang LZ; Rowling E; Kyle S; Chen T; Hopkins A; Cliby WA; Sarkaria J; Beale G; Edmondson RJ; Curtin NJ
    Br J Cancer; 2011 Jul; 105(3):372-81. PubMed ID: 21730979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PRMT5 Inhibitors Regulate DNA Damage Repair Pathways in Cancer Cells and Improve Response to PARP Inhibition and Chemotherapies.
    Carter J; Hulse M; Sivakumar M; Burtell J; Thodima V; Wang M; Agarwal A; Vykuntam K; Spruance J; Bhagwat N; Rager J; Ruggeri B; Scherle P; Ito K
    Cancer Res Commun; 2023 Nov; 3(11):2233-2243. PubMed ID: 37861290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomarker-Guided Development of DNA Repair Inhibitors.
    Cleary JM; Aguirre AJ; Shapiro GI; D'Andrea AD
    Mol Cell; 2020 Jun; 78(6):1070-1085. PubMed ID: 32459988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA Repair Proteins as Therapeutic Targets in Ovarian Cancer.
    López-Camarillo C; Rincón DG; Ruiz-García E; Astudillo-de la Vega H; Marchat LA
    Curr Protein Pept Sci; 2019; 20(4):316-323. PubMed ID: 30215333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside.
    Turk AA; Wisinski KB
    Cancer; 2018 Jun; 124(12):2498-2506. PubMed ID: 29660759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of PARP Inhibitor Resistance.
    O'Connor MJ; Forment JV
    Cancer Treat Res; 2023; 186():25-42. PubMed ID: 37978129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies.
    Padella A; Ghelli Luserna Di Rorà A; Marconi G; Ghetti M; Martinelli G; Simonetti G
    J Hematol Oncol; 2022 Jan; 15(1):10. PubMed ID: 35065680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response.
    Francica P; Rottenberg S
    Genome Med; 2018 Dec; 10(1):101. PubMed ID: 30593284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors.
    Criscuolo D; Morra F; Giannella R; Cerrato A; Celetti A
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31242618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting replicative stress in gynecological cancers as a therapeutic strategy.
    Ngoi NY; Sundararajan V; Tan DS
    Int J Gynecol Cancer; 2020 Aug; 30(8):1224-1238. PubMed ID: 32571890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting DNA Repair Response Promotes Immunotherapy in Ovarian Cancer: Rationale and Clinical Application.
    Xie H; Wang W; Qi W; Jin W; Xia B
    Front Immunol; 2021; 12():661115. PubMed ID: 34712221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The current status of PARP inhibitors in ovarian cancer.
    McLachlan J; George A; Banerjee S
    Tumori; 2016 Oct; 102(5):433-440. PubMed ID: 27716873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel poly-ADP-ribose polymerase inhibitor combination strategies in ovarian cancer.
    McCann KE
    Curr Opin Obstet Gynecol; 2018 Feb; 30(1):7-16. PubMed ID: 29251678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Abnormalities of DNA repair and gynecological cancers].
    Auguste A; Leary A
    Bull Cancer; 2017 Nov; 104(11):971-980. PubMed ID: 29054544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.