These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31051075)

  • 1. Engineered Reversal of Function in Glycolytic Yeast Promoters.
    Rajkumar AS; Özdemir E; Lis AV; Schneider K; Qin J; Jensen MK; Keasling JD
    ACS Synth Biol; 2019 Jun; 8(6):1462-1468. PubMed ID: 31051075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities.
    Peng B; Williams TC; Henry M; Nielsen LK; Vickers CE
    Microb Cell Fact; 2015 Jun; 14():91. PubMed ID: 26112740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae.
    Nevoigt E; Kohnke J; Fischer CR; Alper H; Stahl U; Stephanopoulos G
    Appl Environ Microbiol; 2006 Aug; 72(8):5266-73. PubMed ID: 16885275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide location analysis reveals an important overlap between the targets of the yeast transcriptional regulators Rds2 and Adr1.
    Soontorngun N; Baramee S; Tangsombatvichit C; Thepnok P; Cheevadhanarak S; Robert F; Turcotte B
    Biochem Biophys Res Commun; 2012 Jul; 423(4):632-7. PubMed ID: 22687600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J; Park KM; Lee H; Son YJ; Choi ES
    FEMS Yeast Res; 2013 Feb; 13(1):140-2. PubMed ID: 23131005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae).
    Chambers A; Packham EA; Graham IR
    Curr Genet; 1995 Dec; 29(1):1-9. PubMed ID: 8595651
    [No Abstract]   [Full Text] [Related]  

  • 8. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.
    Nambu-Nishida Y; Sakihama Y; Ishii J; Hasunuma T; Kondo A
    J Biosci Bioeng; 2018 Jan; 125(1):76-86. PubMed ID: 28869192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast.
    Chang YW; Robert Liu FG; Yu N; Sung HM; Yang P; Wang D; Huang CJ; Shih MC; Li WH
    Mol Biol Evol; 2008 Sep; 25(9):1863-75. PubMed ID: 18573843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 11. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering.
    Brochado AR; Patil KR
    Biotechnol Bioeng; 2013 Feb; 110(2):656-9. PubMed ID: 23007522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
    Gancedo JM; Flores CL; Gancedo C
    Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast.
    Zampar GG; Kümmel A; Ewald J; Jol S; Niebel B; Picotti P; Aebersold R; Sauer U; Zamboni N; Heinemann M
    Mol Syst Biol; 2013; 9():651. PubMed ID: 23549479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.
    Da Silva NA; Srikrishnan S
    FEMS Yeast Res; 2012 Mar; 12(2):197-214. PubMed ID: 22129153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae.
    Shen MW; Fang F; Sandmeyer S; Da Silva NA
    Yeast; 2012 Dec; 29(12):495-503. PubMed ID: 23166051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).
    Hansen EH; Møller BL; Kock GR; Bünner CM; Kristensen C; Jensen OR; Okkels FT; Olsen CE; Motawia MS; Hansen J
    Appl Environ Microbiol; 2009 May; 75(9):2765-74. PubMed ID: 19286778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae.
    Deng J; Wu Y; Zheng Z; Chen N; Luo X; Tang H; Keasling JD
    Microb Cell Fact; 2021 Oct; 20(1):202. PubMed ID: 34663323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.