BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31051114)

  • 1. Genes with High Network Connectivity Are Enriched for Disease Heritability.
    Kim SS; Dai C; Hormozdiari F; van de Geijn B; Gazal S; Park Y; O'Connor L; Amariuta T; Loh PR; Finucane H; Raychaudhuri S; Price AL
    Am J Hum Genet; 2019 May; 104(5):896-913. PubMed ID: 31051114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annotations capturing cell type-specific TF binding explain a large fraction of disease heritability.
    van de Geijn B; Finucane H; Gazal S; Hormozdiari F; Amariuta T; Liu X; Gusev A; Loh PR; Reshef Y; Kichaev G; Raychauduri S; Price AL
    Hum Mol Genet; 2020 May; 29(7):1057-1067. PubMed ID: 31595288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease Heritability Enrichment of Regulatory Elements Is Concentrated in Elements with Ancient Sequence Age and Conserved Function across Species.
    Hujoel MLA; Gazal S; Hormozdiari F; van de Geijn B; Price AL
    Am J Hum Genet; 2019 Apr; 104(4):611-624. PubMed ID: 30905396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits.
    Hormozdiari F; Gazal S; van de Geijn B; Finucane HK; Ju CJ; Loh PR; Schoech A; Reshef Y; Liu X; O'Connor L; Gusev A; Eskin E; Price AL
    Nat Genet; 2018 Jul; 50(7):1041-1047. PubMed ID: 29942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the informativeness of deep learning annotations for human complex diseases.
    Dey KK; van de Geijn B; Kim SS; Hormozdiari F; Kelley DR; Price AL
    Nat Commun; 2020 Sep; 11(1):4703. PubMed ID: 32943643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection.
    Gazal S; Finucane HK; Furlotte NA; Loh PR; Palamara PF; Liu X; Schoech A; Bulik-Sullivan B; Neale BM; Gusev A; Price AL
    Nat Genet; 2017 Oct; 49(10):1421-1427. PubMed ID: 28892061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SumHer better estimates the SNP heritability of complex traits from summary statistics.
    Speed D; Balding DJ
    Nat Genet; 2019 Feb; 51(2):277-284. PubMed ID: 30510236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene- and Disease-Based Expansion of the Knowledge on Inborn Errors of Immunity.
    Salnikova LE; Chernyshova EV; Anastasevich LA; Larin SS
    Front Immunol; 2019; 10():2475. PubMed ID: 31695696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease.
    Kim SS; Dey KK; Weissbrod O; Márquez-Luna C; Gazal S; Price AL
    Nat Commun; 2020 Dec; 11(1):6258. PubMed ID: 33288751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of genetic variants and gene network for drug repurposing in colorectal cancer.
    Irham LM; Wong HS; Chou WH; Adikusuma W; Mugiyanto E; Huang WC; Chang WC
    Pharmacol Res; 2020 Nov; 161():105203. PubMed ID: 32950641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pathway Coexpression Network: Revealing pathway relationships.
    Pita-Juárez Y; Altschuler G; Kariotis S; Wei W; Koler K; Green C; Tanzi RE; Hide W
    PLoS Comput Biol; 2018 Mar; 14(3):e1006042. PubMed ID: 29554099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling regulatory network topology improves genome-wide analyses of complex human traits.
    Zhu X; Duren Z; Wong WH
    Nat Commun; 2021 May; 12(1):2851. PubMed ID: 33990562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability.
    Palamara PF; Terhorst J; Song YS; Price AL
    Nat Genet; 2018 Sep; 50(9):1311-1317. PubMed ID: 30104759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification.
    Feng Z; Duren Z; Xin J; Yuan Q; He Y; Su B; Wong WH; Wang Y
    Elife; 2022 Dec; 11():. PubMed ID: 36525361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to estimate the contribution of rare coding variants to complex trait heritability.
    Pathan N; Deng WQ; Di Scipio M; Khan M; Mao S; Morton RW; Lali R; Pigeyre M; Chong MR; Paré G
    Nat Commun; 2024 Feb; 15(1):1245. PubMed ID: 38336875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FunMappOne: a tool to hierarchically organize and visually navigate functional gene annotations in multiple experiments.
    Scala G; Serra A; Marwah VS; Saarimäki LA; Greco D
    BMC Bioinformatics; 2019 Feb; 20(1):79. PubMed ID: 30767762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for overlapping annotations in genomic prediction models of complex traits.
    Mollandin F; Gilbert H; Croiseau P; Rau A
    BMC Bioinformatics; 2022 Sep; 23(1):365. PubMed ID: 36068513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Non-Coding Annotations into Rare Variant Analysis.
    Richardson TG; Campbell C; Timpson NJ; Gaunt TR
    PLoS One; 2016; 11(4):e0154181. PubMed ID: 27128317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies.
    Du Q; Gong C; Wang Q; Zhou D; Yang H; Pan W; Li B; Zhang D
    New Phytol; 2016 Feb; 209(3):1067-82. PubMed ID: 26499329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.