BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31051175)

  • 21. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage.
    Rudorf S; Lipowsky R
    PLoS One; 2015; 10(8):e0134994. PubMed ID: 26270805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is there a unique ribosome phenotype for naturally occurring Escherichia coli?
    Mikkola R; Kurland CG
    Biochimie; 1991; 73(7-8):1061-6. PubMed ID: 1720663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes.
    Bullard JM; Cai YC; Zhang Y; Spremulli LL
    Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions.
    Bilgin N; Kirsebom LA; Ehrenberg M; Kurland CG
    Biochimie; 1988 May; 70(5):611-8. PubMed ID: 3139080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of elongation factor Tu on the ribosome.
    Girshovich AS; Bochkareva ES; Vasiliev VD
    FEBS Lett; 1986 Mar; 197(1-2):192-8. PubMed ID: 3512303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The effect of mutations in ribosomal proteins S4, S12 and L7/L12 on EF-Tu-dependent expenditure of GTP in the process of codon-specific elongation and misreading of poly(U)].
    Kakhniashvili DG; Gavrilova LP
    Biokhimiia; 1989 Aug; 54(8):1247-53. PubMed ID: 2684278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu.
    Hunter SE; Spremulli LL
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption.
    Rodnina MV; Pape T; Fricke R; Wintermeyer W
    Biochem Cell Biol; 1995; 73(11-12):1221-7. PubMed ID: 8722040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli stringent factor binds to ribosomes at a site different from that of elongation factor Tu or G.
    Richter D; Nowak P; Kleinert U
    Biochemistry; 1975 Oct; 14(20):4414-20. PubMed ID: 1100104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form.
    Johansen JS; Kavaliauskas D; Pfeil SH; Blaise M; Cooperman BS; Goldman YE; Thirup SS; Knudsen CR
    Nucleic Acids Res; 2018 Sep; 46(16):8641-8650. PubMed ID: 30107565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rate of translation of natural mRNAs in an optimized in vitro system.
    Pavlov MY; Ehrenberg M
    Arch Biochem Biophys; 1996 Apr; 328(1):9-16. PubMed ID: 8638943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome.
    Kothe U; Wieden HJ; Mohr D; Rodnina MV
    J Mol Biol; 2004 Mar; 336(5):1011-21. PubMed ID: 15037065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex.
    Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M
    Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations in ribosomal protein L19 that decrease the fidelity of translation.
    VanNice J; Gregory ST; Kamath D; O'Connor M
    Biochimie; 2016; 128-129():122-6. PubMed ID: 27477481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of translation of the head protein of T4 bacteriophage by specific binding of EF-Tu to a leader sequence.
    Snyder L; Blight S; Auchtung J
    J Mol Biol; 2003 Nov; 334(3):349-61. PubMed ID: 14623179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.