These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 31051292)

  • 1. Cardiac afferent activity modulates early neural signature of error detection during skilled performance.
    Bury G; García-Huéscar M; Bhattacharya J; Ruiz MH
    Neuroimage; 2019 Oct; 199():704-717. PubMed ID: 31051292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of error processing reflect individual differences in interoceptive sensitivity.
    Sueyoshi T; Sugimoto F; Katayama J; Fukushima H
    Int J Psychophysiol; 2014 Dec; 94(3):278-86. PubMed ID: 25307770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of heartbeat-evoked potential and cardiac cycle effect by auditory stimuli.
    Tanaka Y; Ito Y; Terasawa Y; Umeda S
    Biol Psychol; 2023 Sep; 182():108637. PubMed ID: 37490801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERP evidence of adaptive changes in error processing and attentional control during rhythm synchronization learning.
    Padrão G; Penhune V; de Diego-Balaguer R; Marco-Pallares J; Rodriguez-Fornells A
    Neuroimage; 2014 Oct; 100():460-70. PubMed ID: 24956067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint effects of sensory feedback and interoceptive awareness on conscious error detection: Evidence from event related brain potentials.
    Godefroid E; Pourtois G; Wiersema JR
    Biol Psychol; 2016 Feb; 114():49-60. PubMed ID: 26738634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heart of cognitive control: Cardiac phase modulates processing speed and inhibition.
    Makowski D; Sperduti M; Blondé P; Nicolas S; Piolino P
    Psychophysiology; 2020 Mar; 57(3):e13490. PubMed ID: 31578758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults.
    Ribeiro MJ; Castelo-Branco M
    Neuroimage; 2019 Oct; 199():521-533. PubMed ID: 31173904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered neural signatures of interoception in multiple sclerosis.
    Salamone PC; Esteves S; Sinay VJ; García-Cordero I; Abrevaya S; Couto B; Adolfi F; Martorell M; Petroni A; Yoris A; Torquati K; Alifano F; Legaz A; Cassará FP; Bruno D; Kemp AH; Herrera E; García AM; Ibáñez A; Sedeño L
    Hum Brain Mapp; 2018 Dec; 39(12):4743-4754. PubMed ID: 30076770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From the inside out: Interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing.
    Marshall AC; Gentsch-Ebrahimzadeh A; Schütz-Bosbach S
    Neuroimage; 2022 May; 251():119011. PubMed ID: 35182753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speeded response errors and the error-related negativity modulate early sensory processing.
    Beatty PJ; Buzzell GA; Roberts DM; McDonald CG
    Neuroimage; 2018 Dec; 183():112-120. PubMed ID: 30096369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focus of attention modulates the heartbeat evoked potential.
    Petzschner FH; Weber LA; Wellstein KV; Paolini G; Do CT; Stephan KE
    Neuroimage; 2019 Feb; 186():595-606. PubMed ID: 30472370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response inhibition is disrupted by interoceptive processing at cardiac systole.
    Ren Q; Marshall AC; Kaiser J; Schütz-Bosbach S
    Biol Psychol; 2022 Apr; 170():108323. PubMed ID: 35346793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid adaptive adjustments of selective attention following errors revealed by the time course of steady-state visual evoked potentials.
    Steinhauser M; Andersen SK
    Neuroimage; 2019 Feb; 186():83-92. PubMed ID: 30366075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affective interoceptive inference: Evidence from heart-beat evoked brain potentials.
    Gentsch A; Sel A; Marshall AC; Schütz-Bosbach S
    Hum Brain Mapp; 2019 Jan; 40(1):20-33. PubMed ID: 30159945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trial-by-trial source-resolved EEG responses to gait task challenges predict subsequent step adaptation.
    Wagner J; Martínez-Cancino R; Makeig S
    Neuroimage; 2019 Oct; 199():691-703. PubMed ID: 31181332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the bottleneck account for post-error slowing beyond the post-error response.
    Lavro D; Ben-Shachar MS; Saville CWN; Klein C; Berger A
    Biol Psychol; 2018 Oct; 138():81-90. PubMed ID: 30121286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems.
    Wessel JR; Danielmeier C; Ullsperger M
    J Cogn Neurosci; 2011 Oct; 23(10):3021-36. PubMed ID: 21268673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac cycle modulates reward feedback processing: An ERP study.
    Kimura K
    Neurosci Lett; 2019 Oct; 711():134473. PubMed ID: 31479723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preserved performance monitoring and error detection in left hemisphere stroke.
    Niessen E; Ant JM; Bode S; Saliger J; Karbe H; Fink GR; Stahl J; Weiss PH
    Neuroimage Clin; 2020; 27():102307. PubMed ID: 32570207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions.
    Endrass T; Klawohn J; Schuster F; Kathmann N
    Neuropsychologia; 2008; 46(7):1877-87. PubMed ID: 18514679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.