These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis. Sugawara S; Yamada Y; Arai T; Okato A; Idichi T; Kato M; Koshizuka K; Ichikawa T; Seki N J Hum Genet; 2018 May; 63(5):657-668. PubMed ID: 29540855 [TBL] [Abstract][Full Text] [Related]
7. Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. Koshizuka K; Hanazawa T; Kikkawa N; Katada K; Okato A; Arai T; Idichi T; Osako Y; Okamoto Y; Seki N Auris Nasus Larynx; 2018 Aug; 45(4):854-865. PubMed ID: 29233721 [TBL] [Abstract][Full Text] [Related]
8. Anti-tumor roles of both strands of the Yamada Y; Arai T; Kojima S; Sugawara S; Kato M; Okato A; Yamazaki K; Naya Y; Ichikawa T; Seki N Oncotarget; 2018 Jun; 9(42):26638-26658. PubMed ID: 29928475 [TBL] [Abstract][Full Text] [Related]
9. The Molecular Pathogenesis of Tumor-Suppressive Tomioka Y; Suetsugu T; Seki N; Tanigawa K; Hagihara Y; Shinmura M; Asai S; Kikkawa N; Inoue H; Mizuno K Cells; 2023 Jul; 12(14):. PubMed ID: 37508549 [TBL] [Abstract][Full Text] [Related]
10. Role of pre- Yamada Y; Arai T; Kato M; Kojima S; Sakamoto S; Komiya A; Naya Y; Ichikawa T; Seki N Am J Clin Exp Urol; 2019; 7(1):11-30. PubMed ID: 30906802 [TBL] [Abstract][Full Text] [Related]
11. Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Uchida A; Seki N; Mizuno K; Misono S; Yamada Y; Kikkawa N; Sanada H; Kumamoto T; Suetsugu T; Inoue H Cancer Sci; 2019 Jan; 110(1):420-432. PubMed ID: 30375717 [TBL] [Abstract][Full Text] [Related]
13. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness. Matsushita R; Yoshino H; Enokida H; Goto Y; Miyamoto K; Yonemori M; Inoguchi S; Nakagawa M; Seki N Oncotarget; 2016 May; 7(19):28460-87. PubMed ID: 27072587 [TBL] [Abstract][Full Text] [Related]
14. Six MicroRNA Prognostic Models for Overall Survival of Lung Adenocarcinoma. Li J; Gu X; Gao C; Zhang J Genet Res (Camb); 2022; 2022():5955052. PubMed ID: 36101742 [TBL] [Abstract][Full Text] [Related]
15. Integrated analysis of miRNAs and DNA methylation identifies miR-132-3p as a tumor suppressor in lung adenocarcinoma. Su Y; Shetty A; Jiang F Thorac Cancer; 2020 Aug; 11(8):2112-2124. PubMed ID: 32500672 [TBL] [Abstract][Full Text] [Related]
16. The LncRNA NEAT1 Accelerates Lung Adenocarcinoma Deterioration and Binds to Mir-193a-3p as a Competitive Endogenous RNA. Xiong DD; Li ZY; Liang L; He RQ; Ma FC; Luo DZ; Hu XH; Chen G Cell Physiol Biochem; 2018; 48(3):905-918. PubMed ID: 30036873 [TBL] [Abstract][Full Text] [Related]
17. Regulation of Oncogenic Targets by the Tumor-Suppressive Okada R; Goto Y; Yamada Y; Kato M; Asai S; Moriya S; Ichikawa T; Seki N Biomedicines; 2020 Dec; 8(12):. PubMed ID: 33322675 [TBL] [Abstract][Full Text] [Related]
19. Mining TCGA and GEO databases for the prediction of poor prognosis in lung adenocarcinoma based on up-regulated expression of TNS4. Liu F; Gao X; Liu W; Xue W Medicine (Baltimore); 2022 Oct; 101(42):e31120. PubMed ID: 36281194 [TBL] [Abstract][Full Text] [Related]
20. Regulation of Oncogenic Targets by Tumor-Suppressive Mizuno K; Tanigawa K; Misono S; Suetsugu T; Sanada H; Uchida A; Kawano M; Machida K; Asai S; Moriya S; Inoue H; Seki N Biomedicines; 2021 Dec; 9(12):. PubMed ID: 34944699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]