These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31052416)
1. Deep-sea Hydrothermal Vent Bacteria as a Source of Glycosaminoglycan-Mimetic Exopolysaccharides. Zykwinska A; Marchand L; Bonnetot S; Sinquin C; Colliec-Jouault S; Delbarre-Ladrat C Molecules; 2019 May; 24(9):. PubMed ID: 31052416 [TBL] [Abstract][Full Text] [Related]
2. Bioprospecting for Exopolysaccharides from Deep-Sea Hydrothermal Vent Bacteria: Relationship between Bacterial Diversity and Chemical Diversity. Delbarre-Ladrat C; Salas ML; Sinquin C; Zykwinska A; Colliec-Jouault S Microorganisms; 2017 Sep; 5(3):. PubMed ID: 28930185 [TBL] [Abstract][Full Text] [Related]
3. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter. Jiang L; Xu H; Zeng X; Wu X; Long M; Shao Z Res Microbiol; 2015 Nov; 166(9):677-87. PubMed ID: 26026841 [TBL] [Abstract][Full Text] [Related]
4. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic]. Xu H; Jiang L; Li S; Zhong T; Lai Q; Shao Z Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):88-100. PubMed ID: 27305783 [TBL] [Abstract][Full Text] [Related]
5. Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. Zhang W; Sun J; Cao H; Tian R; Cai L; Ding W; Qian PY Microbiome; 2016 Sep; 4(1):49. PubMed ID: 27600525 [TBL] [Abstract][Full Text] [Related]
6. Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? Guezennec J J Ind Microbiol Biotechnol; 2002 Oct; 29(4):204-8. PubMed ID: 12355321 [TBL] [Abstract][Full Text] [Related]
7. Diversity and characterization of bacteria associated with the deep-sea hydrothermal vent crab Austinograea sp. comparing with those of two shallow-water crabs by 16S ribosomal DNA analysis. Zhang N; Song C; Wang M; Liu Y; Hui M; Cui Z PLoS One; 2017; 12(11):e0187842. PubMed ID: 29121118 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. He T; Zhang X Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941 [TBL] [Abstract][Full Text] [Related]
9. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Poli A; Anzelmo G; Nicolaus B Mar Drugs; 2010 Jun; 8(6):1779-802. PubMed ID: 20631870 [TBL] [Abstract][Full Text] [Related]
10. Characterization of New Oligosaccharides Obtained by An Enzymatic Cleavage of the Exopolysaccharide Produced by the Deep-Sea Bacterium Akoumany K; Zykwinska A; Sinquin C; Marchand L; Fanuel M; Ropartz D; Rogniaux H; Pipelier M; Delbarre-Ladrat C; Colliec-Jouault S Molecules; 2019 Sep; 24(19):. PubMed ID: 31546751 [TBL] [Abstract][Full Text] [Related]
11. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough. Sun QL; Wang MQ; Sun L World J Microbiol Biotechnol; 2015 Dec; 31(12):2025-37. PubMed ID: 26410427 [TBL] [Abstract][Full Text] [Related]
13. Phylotype diversity of deep-sea hydrothermal vent prokaryotes trapped by 0.2- and 0.1-microm-pore-size filters. Naganuma T; Miyoshi T; Kimura H Extremophiles; 2007 Jul; 11(4):637-46. PubMed ID: 17401540 [TBL] [Abstract][Full Text] [Related]
14. Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Nichols CM; Lardière SG; Bowman JP; Nichols PD; A E Gibson J; Guézennec J Microb Ecol; 2005 May; 49(4):578-89. PubMed ID: 16052372 [TBL] [Abstract][Full Text] [Related]
15. Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Sievert SM; Kuever J; Muyzer G Appl Environ Microbiol; 2000 Jul; 66(7):3102-9. PubMed ID: 10877814 [TBL] [Abstract][Full Text] [Related]
16. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber. Higashi Y; Sunamura M; Kitamura K; Nakamura K; Kurusu Y; Ishibashi J; Urabe T; Maruyama A FEMS Microbiol Ecol; 2004 Mar; 47(3):327-36. PubMed ID: 19712321 [TBL] [Abstract][Full Text] [Related]
17. Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Elsaied H; Stokes HW; Nakamura T; Kitamura K; Fuse H; Maruyama A Environ Microbiol; 2007 Sep; 9(9):2298-312. PubMed ID: 17686026 [TBL] [Abstract][Full Text] [Related]
18. A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. Cambon-Bonavita MA; Raguénès G; Jean J; Vincent P; Guezennec J J Appl Microbiol; 2002; 93(2):310-5. PubMed ID: 12147080 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. François F; Lombard C; Guigner JM; Soreau P; Brian-Jaisson F; Martino G; Vandervennet M; Garcia D; Molinier AL; Pignol D; Peduzzi J; Zirah S; Rebuffat S Appl Environ Microbiol; 2012 Feb; 78(4):1097-106. PubMed ID: 22156431 [TBL] [Abstract][Full Text] [Related]
20. Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Raguénès G; Christen R; Guezennec J; Pignet P; Barbier G Int J Syst Bacteriol; 1997 Oct; 47(4):989-95. PubMed ID: 9336897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]