These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31052428)

  • 1. Role of Hydrogen-Charging on Nucleation and Growth of Ductile Damage in Austenitic Stainless Steels.
    Maire E; Grabon S; Adrien J; Lorenzino P; Asanuma Y; Takakuwa O; Matsunaga H
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance.
    Wang Y; Zhou Z; Wu W; Gong J
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of Melt Pool Structure on the Hydrogen Embrittlement Behavior of a Selective Laser-Melted 316L Austenitic Stainless Steel.
    Liu J; Yang H; Meng L; Liu D; Xu T; Xu D; Shao X; Shao C; Li S; Zhang P; Zhang Z
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An In-Situ Electrochemical Nanoindentation (ECNI) Study on the Effect of Hydrogen on the Mechanical Properties of 316L Austenitic Stainless Steel.
    Basa A; Wang D; Espallargas N; Wan D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel.
    Astafurova E; Fortuna A; Melnikov E; Astafurov S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging.
    Yang X; Yu H; Song C; Li L
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.
    Papula S; Sarikka T; Anttila S; Talonen J; Virkkunen I; Hänninen H
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Wall Thickness Variation on Hydrogen Embrittlement Susceptibility of Additively Manufactured 316L Stainless Steel with Lattice Auxetic Structures.
    Khedr M; Hamada A; Abd-Elaziem W; Jaskari M; Elsamanty M; Kömi J; Järvenpää A
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate effects on transformation kinetics in a metastable austenitic stainless steel.
    Alturk R; Luecke WE; Mates S; Araujo A; Raghavan KS; Abu-Farha F
    Procedia Eng; 2017; 207():. PubMed ID: 33029261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging.
    Qu J; Feng M; An T; Bi Z; Du J; Yang F; Zheng S
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31409025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys.
    Zhou X; Tehranchi A; Curtin WA
    Phys Rev Lett; 2021 Oct; 127(17):175501. PubMed ID: 34739299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.
    Endo K; Suzuki M; Ohno H
    Dent Mater J; 2000 Mar; 19(1):34-49. PubMed ID: 11219089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excellent Combination of Tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steel.
    Kumar GVS; Mangipudi KR; Sastry GVS; Singh LK; Dhanasekaran S; Sivaprasad K
    Sci Rep; 2020 Jan; 10(1):354. PubMed ID: 31941948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():196-203. PubMed ID: 25492189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution.
    Yu Y; Shironita S; Souma K; Umeda M
    Heliyon; 2018 Nov; 4(11):e00958. PubMed ID: 30839865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.
    Tulinski M; Jurczyk M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8779-82. PubMed ID: 23421285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.
    Ossa CP; Rogero SO; Tschiptschin AP
    J Mater Sci Mater Med; 2006 Nov; 17(11):1095-100. PubMed ID: 17122924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.