These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31052545)

  • 1. Modeling and Experimental Testing of an Unmanned Surface Vehicle with Rudderless Double Thrusters.
    Li C; Jiang J; Duan F; Liu W; Wang X; Bu L; Sun Z; Yang G
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Identification for Vector Propulsion of an Unmanned Surface Vehicle: Three Degrees of Freedom Model and Response Model.
    Mu D; Wang G; Fan Y; Sun X; Qiu B
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic Analysis-Based Modeling and Experimental Verification of a New Water-Jet Thruster for an Amphibious Spherical Robot.
    Hou X; Guo S; Shi L; Xing H; Liu Y; Liu H; Hu Y; Xia D; Li Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle.
    Cho HJ; Jeong SK; Ji DH; Tran NH; Vu MT; Choi HS
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Verification of Heading and Velocity Coupled Nonlinear Controller for Unmanned Surface Vehicle.
    Jin J; Zhang J; Liu D
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on Dynamic Behavior of Unmanned Surface Vehicle-Linked Unmanned Underwater Vehicle System for Underwater Exploration.
    Vu MT; Van M; Bui DHP; Do QT; Huynh TT; Lee SD; Choi HS
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the dynamic performance of a thrust stand for small-thrust liquid-pulsed thrusters.
    Xing Q; Li T; Zhang J; Ren ZJ
    Rev Sci Instrum; 2019 Jun; 90(6):065113. PubMed ID: 31254981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-under-Actuated Unmanned Surface Vessel Coordinated Path Tracking.
    Li Z; Liu Z; Zhang J
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation.
    Li M; Guo C; Yu H; Yuan Y
    ISA Trans; 2022 Jun; 125():306-317. PubMed ID: 34275611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Improved Particle Swarm Optimization for Navigation of Unmanned Surface Vehicles.
    Xin J; Li S; Sheng J; Zhang Y; Cui Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Waterline Detection of Unmanned Surface Vehicles Based on Optical Images.
    Wei Y; Zhang Y
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions.
    Jorge VAM; Granada R; Maidana RG; Jurak DA; Heck G; Negreiros APF; Dos Santos DH; Gonçalves LMG; Amory AM
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underactuated USV path following mechanism based on the cascade method.
    Lin M; Zhang Z; Pang Y; Lin H; Ji Q
    Sci Rep; 2022 Jan; 12(1):1461. PubMed ID: 35087164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of Trajectory Tracking Based on Nonlinear Guidance Logic for Hydrographic Unmanned Surface Vessels.
    Stateczny A; Burdziakowski P; Najdecka K; Domagalska-Stateczna B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs.
    Fan Y; Sun Z; Wang G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unmanned Surface Vehicle Collision Avoidance Path Planning in Restricted Waters Using Multi-Objective Optimisation Complying with COLREGs.
    Gu Y; Rong Z; Tong H; Wang J; Si Y; Yang S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative Learning-Based Path and Speed Profile Optimization for an Unmanned Surface Vehicle.
    Yang Y; Li Q; Zhang J; Xie Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact Force Measurement in an Operational Thrust Bearing using PVDF Film at the Blade and Pad Passing Frequencies.
    Youssef A; Matthews D; Guzzomi A; Pan J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greedy Mechanism Based Particle Swarm Optimization for Path Planning Problem of an Unmanned Surface Vehicle.
    Xin J; Zhong J; Li S; Sheng J; Cui Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Dynamic Window Approach for Unmanned Surface Vehicles' Local Path Planning Considering the Impact of Environmental Factors.
    Wang Z; Liang Y; Gong C; Zhou Y; Zeng C; Zhu S
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.