BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 31052553)

  • 1. Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms.
    Pan X; Chen L; Feng KY; Hu XH; Zhang YH; Kong XY; Huang T; Cai YD
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms.
    Yuan F; Lu L; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165822. PubMed ID: 32360590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms.
    Chen L; Pan X; Guo W; Gan Z; Zhang YH; Niu Z; Huang T; Cai YD
    Genomics; 2020 May; 112(3):2524-2534. PubMed ID: 32045671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SnoReport 2.0: new features and a refined Support Vector Machine to improve snoRNA identification.
    de Araujo Oliveira JV; Costa F; Backofen R; Stadler PF; Machado Telles Walter ME; Hertel J
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):464. PubMed ID: 28105919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis.
    Wang S; Cai Y
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2218-2227. PubMed ID: 29277326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization.
    Cavaillé J; Buiting K; Kiefmann M; Lalande M; Brannan CI; Horsthemke B; Bachellerie JP; Brosius J; Hüttenhofer A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14311-6. PubMed ID: 11106375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine.
    Li J; Lu L; Zhang YH; Xu Y; Liu M; Feng K; Chen L; Kong X; Huang T; Cai YD
    Cancer Gene Ther; 2020 Feb; 27(1-2):56-69. PubMed ID: 31138902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-specific small nucleolar RNAs.
    Rogelj B
    J Mol Neurosci; 2006; 28(2):103-9. PubMed ID: 16679551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pan-cancer Analysis of the Expression and Clinical Relevance of Small Nucleolar RNAs in Human Cancer.
    Gong J; Li Y; Liu CJ; Xiang Y; Li C; Ye Y; Zhang Z; Hawke DH; Park PK; Diao L; Putkey JA; Yang L; Guo AY; Lin C; Han L
    Cell Rep; 2017 Nov; 21(7):1968-1981. PubMed ID: 29141226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SnoReport: computational identification of snoRNAs with unknown targets.
    Hertel J; Hofacker IL; Stadler PF
    Bioinformatics; 2008 Jan; 24(2):158-64. PubMed ID: 17895272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separated Siamese Twins: Intronic Small Nucleolar RNAs and Matched Host Genes May be Altered in Conjunction or Separately in Multiple Cancer Types.
    Penzo M; Clima R; Trerè D; Montanaro L
    Cells; 2020 Feb; 9(2):. PubMed ID: 32046192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative Polyadenylation Modification Patterns Reveal Essential Posttranscription Regulatory Mechanisms of Tumorigenesis in Multiple Tumor Types.
    Li M; Pan X; Zeng T; Zhang YH; Feng K; Chen L; Huang T; Cai YD
    Biomed Res Int; 2020; 2020():6384120. PubMed ID: 32626751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights.
    Liu N; Xiao B; Ren HY; Tang ZL; Li K
    Anim Genet; 2013 Feb; 44(1):24-33. PubMed ID: 22908878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory role of small nucleolar RNAs in human diseases.
    Stepanov GA; Filippova JA; Komissarov AB; Kuligina EV; Richter VA; Semenov DV
    Biomed Res Int; 2015; 2015():206849. PubMed ID: 26060813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs.
    Jha P; Agrawal R; Pathak P; Kumar A; Purkait S; Mallik S; Suri V; Chand Sharma M; Gupta D; Suri A; Sharma BS; Julka PK; Kulshreshtha R; Sarkar C
    Int J Cancer; 2015 Nov; 137(10):2343-53. PubMed ID: 25994230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational screen for C/D box snoRNAs in the human genomic region associated with Prader-Willi and Angelman syndromes.
    Sridhar P; Gan HH; Schlick T
    J Biomed Sci; 2008 Nov; 15(6):697-705. PubMed ID: 18661287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review.
    Dsouza VL; Adiga D; Sriharikrishnaa S; Suresh PS; Chatterjee A; Kabekkodu SP
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188501. PubMed ID: 33400969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic and pharmacogenomic landscape of snoRNAs in human cancer.
    Liu Y; Ruan H; Li S; Ye Y; Hong W; Gong J; Zhang Z; Jing Y; Zhang X; Diao L; Han L
    Mol Cancer; 2020 Jun; 19(1):108. PubMed ID: 32576192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Gene Expression Rules That Define the Subtypes in Glioma.
    Cai YD; Zhang S; Zhang YH; Pan X; Feng K; Chen L; Huang T; Kong X
    J Clin Med; 2018 Oct; 7(10):. PubMed ID: 30322114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SnoRNAs and the emerging class of sdRNAs: Multifaceted players in oncogenesis.
    Abel Y; Rederstorff M
    Biochimie; 2019 Sep; 164():17-21. PubMed ID: 31078583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.