These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31052669)

  • 41. Tunable continuous-wave diamond Raman laser.
    Parrotta DC; Kemp AJ; Dawson MD; Hastie JE
    Opt Express; 2011 Nov; 19(24):24165-70. PubMed ID: 22109443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative study of intracavity KTP-based Raman generation between Nd:YAP and Nd:YAG lasers operating on the (4)F(3/2) → (4)I(13/2) transition.
    Huang YJ; Chen YF; Chen WD; Zhang G
    Opt Express; 2015 Apr; 23(8):10435-43. PubMed ID: 25969085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser.
    Bonner GM; Pask HM; Lee AJ; Kemp AJ; Wang J; Zhang H; Omatsu T
    Opt Express; 2012 Apr; 20(9):9810-8. PubMed ID: 22535074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of the nonlinear crystal length for high-power single-frequency intracavity frequency-doubling lasers.
    Guo Y; Su J; Lu H
    Appl Opt; 2022 Sep; 61(26):7565-7570. PubMed ID: 36256354
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selectable two-wavelength Nd:YVO
    Hsieh CL; Huang HJ; Chen CL; Liang HC; Chen YF
    Opt Lett; 2023 Mar; 48(6):1510-1513. PubMed ID: 36946965
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation.
    Jasbeer H; Williams RJ; Kitzler O; McKay A; Mildren RP
    Opt Express; 2018 Jan; 26(2):1930-1941. PubMed ID: 29401914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm.
    Warrier AM; Lin J; Pask HM; Mildren RP; Coutts DW; Spence DJ
    Opt Express; 2014 Feb; 22(3):3325-33. PubMed ID: 24663623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Raman fiber laser harmonically mode-locked by exploiting the intermodal beating of CW multimode pump source.
    Luo ZQ; Ye CC; Fu HY; Cheng HH; Wang JZ; Cai ZP
    Opt Express; 2012 Aug; 20(18):19905-11. PubMed ID: 23037042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser.
    Lee AJ; Omatsu T; Pask HM
    Opt Express; 2013 May; 21(10):12401-9. PubMed ID: 23736458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm.
    Shen H; Wang Q; Zhang X; Liu Z; Bai F; Cong Z; Chen X; Wu Z; Wang W; Gao L; Lan W
    Opt Lett; 2012 Oct; 37(19):4113-5. PubMed ID: 23027296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode.
    Meier T; Willke B; Danzmann K
    Opt Lett; 2010 Nov; 35(22):3742-4. PubMed ID: 21081982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers.
    Lu H; Su J; Zheng Y; Peng K
    Opt Lett; 2014 Mar; 39(5):1117-20. PubMed ID: 24690685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extracavity pumped BaWO4 anti-Stokes Raman laser.
    Wang C; Zhang X; Wang Q; Cong Z; Liu Z; Wei W; Wang W; Wu Z; Zhang Y; Li L; Chen X; Li P; Zhang H; Ding S
    Opt Express; 2013 Nov; 21(22):26014-26. PubMed ID: 24216826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intracavity frequency converted Raman laser producing 10 deep blue to cyan emission lines with up to 0.94  W output power.
    Geskus D; Jakutis-Neto J; Pask HM; Wetter NU
    Opt Lett; 2014 Dec; 39(24):6799-802. PubMed ID: 25503000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.
    Surin AA; Borisenko TE; Larin SV
    Opt Lett; 2016 Jun; 41(11):2644-7. PubMed ID: 27244435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cascaded self-Raman lasers based on 382 cm(-1) shift in Nd:GdVO4.
    Lin J; Pask HM
    Opt Express; 2012 Jul; 20(14):15180-5. PubMed ID: 22772216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frequency expansion of orthogonally polarized dual-wavelength laser by cascaded stimulated Raman scattering.
    Dai SB; Tu ZH; Zhu SQ; Yin H; Li Z; Zhen Y; Chen ZQ
    Opt Lett; 2019 Aug; 44(15):3705-3708. PubMed ID: 31368948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium.
    Eismann U; Bergschneider A; Sievers F; Kretzschmar N; Salomon C; Chevy F
    Opt Express; 2013 Apr; 21(7):9091-102. PubMed ID: 23571998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-mode Raman fiber laser based on a multimode fiber.
    Baek SH; Roh WB
    Opt Lett; 2004 Jan; 29(2):153-5. PubMed ID: 14743995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlled scanning of a continuous-wave dye laser with an intracavity photorefractive element.
    Ramsey JM; Whitten WB
    Opt Lett; 1987 Nov; 12(11):915-7. PubMed ID: 19741914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.