These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31052696)

  • 1. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier.
    Song Z; Liu H; Liu X; Zhang W; Zou H; Zhang J; Qu J
    Opt Express; 2019 Mar; 27(6):8848-8857. PubMed ID: 31052696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rydberg atom-based AM receiver with a weak continuous frequency carrier.
    Li H; Hu J; Bai J; Shi M; Jiao Y; Zhao J; Jia S
    Opt Express; 2022 Apr; 30(8):13522-13529. PubMed ID: 35472962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement.
    Song Z; Zhang W; Wu Q; Mu H; Liu X; Zhang L; Qu J
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field.
    Yao J; An Q; Zhou Y; Yang K; Wu F; Fu Y
    Opt Lett; 2022 Oct; 47(20):5256-5259. PubMed ID: 36240336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic-field-induced splitting of Rydberg Electromagnetically Induced Transparency and Autler-Townes spectra in
    Li X; Cui Y; Hao J; Zhou F; Wang Y; Jia F; Zhang J; Xie F; Zhong Z
    Opt Express; 2023 Nov; 31(23):38165-38178. PubMed ID: 38017929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pole analysis of EIT-AT spectrum with Rydberg atoms.
    Shi M; Jiao Y; Zhao J
    Opt Express; 2021 Nov; 29(23):37253-37261. PubMed ID: 34808802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems.
    Zhang H; Ma Y; Liao K; Yang W; Liu Z; Ding D; Yan H; Li W; Zhang L
    Sci Bull (Beijing); 2024 May; 69(10):1515-1535. PubMed ID: 38614855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor.
    Simons MT; Gordon JA; Holloway CL
    Appl Opt; 2018 Aug; 57(22):6456-6460. PubMed ID: 30117878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms.
    Jia F; Yu Y; Liu X; Zhang X; Zhang L; Wang F; Mei J; Zhang J; Xie F; Zhong Z
    Appl Opt; 2020 Sep; 59(27):8253-8258. PubMed ID: 32976410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinction of electromagnetically induced transparency and Autler-Towners splitting in a Rydberg-involved ladder-type cold atom system.
    Ji Z; Jiao Y; Xue Y; Hao L; Zhao J; Jia S
    Opt Express; 2021 Apr; 29(8):11406-11415. PubMed ID: 33984920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast simulation for interacting four-level Rydberg atoms: electromagnetically induced transparency and Autler-Townes splitting.
    Xu XYI; Xie G; Ma J; Ying L; Yuan J; Huang Z; Sha WEI
    Opt Express; 2024 Jun; 32(12):21755-21766. PubMed ID: 38859522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom-based sensing technique of microwave electric and magnetic fields via a single rubidium vapor cell.
    Feng Z; Liu X; Zhang Y; Ruan W; Song Z; Qu J
    Opt Express; 2023 Jan; 31(2):1692-1704. PubMed ID: 36785199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio frequency electric field-enhanced sensing based on the Rydberg atom-based superheterodyne receiver.
    Yang W; Jing M; Zhang H; Zhang L; Xiao L; Jia S
    Opt Lett; 2024 Jun; 49(11):2938-2941. PubMed ID: 38824297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive detection of radio-frequency field phase with interacting dark states in Rydberg atoms.
    Lin L; He Y; Yin Z; Li D; Jia Z; Zhao Y; Chen B; Peng Y
    Appl Opt; 2022 Feb; 61(6):1427-1433. PubMed ID: 35201026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-imaginary spectrum decomposition of the transparency spectra in microwave dressed Rydberg systems.
    Niu W; Qin L; Shi Z; Zhang Y; Xia S; Feng X; Wang Q; Liu J; Zhao Z; Zhu Z; Li W; Zhao X
    Opt Express; 2024 Jun; 32(12):21374-21388. PubMed ID: 38859492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autler-Townes splitting of three-photon excitation of cesium cold Rydberg gases.
    Bai J; Jiao Y; He Y; Song R; Zhao J; Jia S
    Opt Express; 2022 May; 30(10):16748-16757. PubMed ID: 36221511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency.
    Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S
    Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency stabilization method for transition to a Rydberg state using Zeeman modulation.
    Jia F; Zhang J; Zhang L; Wang F; Mei J; Yu Y; Zhong Z; Xie F
    Appl Opt; 2020 Mar; 59(7):2108-2113. PubMed ID: 32225735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple radio frequency measurements with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth.
    Shi T; Chen Y
    Opt Lett; 2021 Jul; 46(14):3460-3463. PubMed ID: 34264238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband lower-IF RF receiver based on microwave photonic mixer and Kramers-Kronig detection.
    Yin C; Li J; Shu L; Yu Z; Yin F; Zhou Y; Dai Y; Xu K
    Opt Express; 2018 Oct; 26(20):26400-26410. PubMed ID: 30469728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.