These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31052785)

  • 1. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range.
    Teng D; Wang K; Li Z; Zhao Y
    Opt Express; 2019 Apr; 27(9):12458-12469. PubMed ID: 31052785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Transmission of Surface Plasmons in Graphene-Covered Nanowire Pairs with Substrate.
    Teng D; Wang K; Huan Q; Zhao Y; Tang Y
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31717659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetric Graphene Dielectric Nanowaveguides as Ultra-Compact Photonic Structures.
    Teng D; Wang Y; Xu T; Wang H; Shao Q; Tang Y
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Low-Loss Mid-Infrared Plasmonic Waveguides Based on Multilayer Graphene Metamaterials.
    Huang CC; Chang RJ; Cheng CW
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Coated Nanowire Waveguides and Their Applications.
    Teng D; Wang K; Li Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of hybrid plasmon-phonon-polariton modes in hBN/graphene/hBN stacks for mid-infrared waveguiding.
    Tu PY; Huang CC
    Opt Express; 2022 Jan; 30(2):2863-2876. PubMed ID: 35209418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical model for plasmon modes in graphene-coated nanowire.
    Gao Y; Ren G; Zhu B; Liu H; Lian Y; Jian S
    Opt Express; 2014 Oct; 22(20):24322-31. PubMed ID: 25322007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modal properties of a cylindrical graphene-coated nanowire deposited on a hexagonal boron nitride substrate.
    Hajati M; Monfared YE
    Appl Opt; 2019 Aug; 58(24):6666-6671. PubMed ID: 31503598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides.
    Zhang S; Xu H
    ACS Nano; 2012 Sep; 6(9):8128-35. PubMed ID: 22892010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.
    Kim Y; Kwon MS
    Nanoscale; 2017 Nov; 9(44):17429-17438. PubMed ID: 29104985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-mode graphene-coated nanowire plasmonic waveguide.
    Gao Y; Ren G; Zhu B; Wang J; Jian S
    Opt Lett; 2014 Oct; 39(20):5909-12. PubMed ID: 25361117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dimensional gap plasmons for enhanced light-graphene interactions.
    Kim Y; Yu S; Park N
    Sci Rep; 2017 Feb; 7():43333. PubMed ID: 28240230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes.
    Zhu B; Ren G; Gao Y; Yang Y; Lian Y; Jian S
    Opt Express; 2014 Oct; 22(20):24096-103. PubMed ID: 25321984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene.
    Cheng Y; Yang J; Lu Q; Tang H; Huang M
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene coated ZnO nanowire optical waveguides.
    Chen B; Meng C; Yang Z; Li W; Lin S; Gu T; Guo X; Wang D; Yu S; Wong CW; Tong L
    Opt Express; 2014 Oct; 22(20):24276-85. PubMed ID: 25322002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity.
    Zhao J; Liu X; Qiu W; Ma Y; Huang Y; Wang JX; Qiang K; Pan JQ
    Opt Express; 2014 Mar; 22(5):5754-61. PubMed ID: 24663913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate.
    Hajati M; Hajati Y
    Appl Opt; 2017 Feb; 56(4):870-875. PubMed ID: 28158087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.