BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31052794)

  • 1. Analyzing the effect of the incidence angle on chlorophyll fluorescence intensity based on laser-induced fluorescence lidar.
    Yang J; Cheng Y; Du L; Gong W; Shi S; Sun J; Chen B
    Opt Express; 2019 Apr; 27(9):12541-12550. PubMed ID: 31052794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophyll fluorescence emission spectrum inside a leaf.
    Pedrós R; Moya I; Goulas Y; Jacquemoud S
    Photochem Photobiol Sci; 2008 Apr; 7(4):498-502. PubMed ID: 18385895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System.
    Cadondon JG; Ong PMB; Vallar EA; Shiina T; Galvez MCD
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Chlorophyll Concentration of Paddy Rice on the Fluorescence Spectrum.
    Yang J; Gong W; Shi S; Du L; Sun J; Song SL; Ma YY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3410-3. PubMed ID: 30247001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved principal component imaging analysis of chlorophyll fluorescence induction for monitoring leaf water stress.
    Kobori H; Tsuchikawa S
    Appl Spectrosc; 2013 Jun; 67(6):594-9. PubMed ID: 23735243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active 3D Imaging of Vegetation based on Multi-Wavelength Fluorescence LiDAR.
    Zhao X; Shi S; Yang J; Gong W; Sun J; Chen B; Guo K; Chen B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating leaf chlorophyll content by laser-induced fluorescence technology at different viewing zenith angles.
    Hao T; Han Y; Li Z; Yao H; Niu H
    Appl Opt; 2020 Sep; 59(26):7734-7744. PubMed ID: 32976443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Laser-induced fluorescence spectroscopy characterization of farmland soil moisture content].
    Zhang SR; Dong DM; Zheng WG; Zhao XD; Wang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2623-7. PubMed ID: 23285852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models.
    Cordón GB; Lagorio MG
    Photochem Photobiol Sci; 2006 Aug; 5(8):735-40. PubMed ID: 16886088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (cucurbita pepo) leaves.
    Jovanić BR; Dramićanin MD
    Luminescence; 2003; 18(5):274-7. PubMed ID: 14587079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canopy chlorophyll fluorescence applied to stress detection using an easy-to-build micro-lidar.
    Moya I; Loayza H; López ML; Quiroz R; Ounis A; Goulas Y
    Photosynth Res; 2019 Oct; 142(1):1-15. PubMed ID: 31129867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of time decay characteristics of laser-induced fluorescence in the classification of vegetation.
    Gong W; Yang J; Shi S; Du L; Sun J; Song S
    Luminescence; 2017 Feb; 32(1):17-21. PubMed ID: 27125908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the room-temperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.
    Franck F; Dewez D; Popovic R
    Photochem Photobiol; 2005; 81(2):431-6. PubMed ID: 15584772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. Schott.
    Lin ZF; Liu N; Lin GZ; Pan XP; Peng CL
    J Fluoresc; 2007 Nov; 17(6):663-9. PubMed ID: 17665291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the effect of incident angle on echo intensity acquired by hyperspectral lidar based on the Lambert-Beckman model.
    Qian X; Yang J; Shi S; Gong W; Du L; Chen B; Chen B
    Opt Express; 2021 Mar; 29(7):11055-11069. PubMed ID: 33820225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Investigation of exciting light and plant leaves age effects on chlorophyll fluorescense of radish plants].
    Nesterenko TV; Tikhomirov AA; Shikhov VN
    Biofizika; 2012; 57(4):614-20. PubMed ID: 23035526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions.
    Susila P; Naus J
    Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios.
    Maurya R; Gopal R
    Appl Spectrosc; 2008 Apr; 62(4):433-8. PubMed ID: 18416903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.